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Abstract Different magnetic materials of spinel copper and cobalt nanoferrites added to silver–magnetite
nanoparticles were fabricated by a facile, low cost, and rapid auto-combustion method to form a nanocom-
posite. X-ray diffraction patterns and atomic force microscopy were studied for the investigated samples
and confirmed their nanosize range. Adding cobalt nanoferrite to silver–magnetite (CoAF) yielded a more
pronounced effect in the magnetic measurements than adding copper nanoferrite (CuAF). This result was
attributed to the much higher coercivity H c and saturation magnetization M s (5.7-fold and 2.8-fold, respec-
tively) of CoAF than CuAF; accordingly, the CoAF nanocomposite can be applied to a permanent magnet.
Next, the operating frequencies of the nanocomposites were calculated from the magnetic measurements.
The CoAF and CuAF nanocomposites were applicable in the microwave super-high-frequency C-band and
the microwave super-high-frequency S-band, respectively. Both nanocomposites were ineffective against
the tested fungi but showed strong antimicrobial activities against the tested Gram-positive and Gram-
negative bacteria. Thus, CoAF and CuAF nanocomposites are potential antibacterial nanomaterials for
biomedical applications.

1 Introduction

Spinel nanoferrites with structure formula AB2O4,
where A is a divalent metal ion (such as cobalt and
copper) and B is a trivalent metal ion (such as iron),
are used as magnetic materials that can be applied in
many applications [1, 2]. Nanoparticle materials are
prepared by various solid-state and wet methods [3,
4]. Wet methods such as the sol–gel, co-precipitation,
citrate, flash, and oxalate are the most effective and
well known. The present study adopts the flash auto-
combustion method, which is fast and low cost.

Researchers are interested in the fabrication of differ-
ent magnetic materials by different methods to study
their structure and physical properties to give unique
materials with the best specifications to be applied in
many fields. It is well known that copper (CuFe2O4)
and cobalt (CoFe2O4) nanoferrites are different mag-
netic materials which are paramagnetic (soft) and fer-
romagnetic (hard) magnetic materials, respectively [5,
6].
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URL: http://scholar.cu.edu.eg/?q=asmaaali/

Interest in biomedical applications has spiked since
the onset of the COVID-19 pandemic. Scientists world-
wide are now cooperating in the development of antivi-
ral treatments. The most effective agents will be active
against viruses, bacteria, and fungi. Bacteria and fungi
are important because the misuse of antibiotics has led
to strains with high resistance to the present antibiotics.
Thus, the authors expect today’s antibacterial and anti-
fungal drugs to become ineffective. An alternative nano-
material that acts against various bacteria and fungi
is imminently needed. Diamagnetic silver nanoparticles
(Ag) are more effective in the nanoscale range and are
known for their antiviral, anticancer, and antibacterial
activities [7–11]. They are also used in water purifica-
tion, biosensing, and optoelectronics devices [12–14].
Moreover, it is reported that the strongest magnetic
material in the transition metal oxides is magnetite [15].
It has strong efficacy against antimicrobial properties,
especially when added to silver nanoparticles [16]. Thus,
in the present study, a mixture of different magnetic
materials added to silver–magnetite nanoparticles was
studied to give a new material with unique properties
in many technological applications.
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Add distilled 
water to each 
mixture.

Heat at 500 oC.

Fine powder 
appeared.

Grind for one 
hour.

• 0.5 CoFe2O4/0.5Ag-Fe3O4 nanocomposite

• 0.5CuFe2O4/0.5Ag-Fe3O4 nanocomposite

Fig. 1 Flowchart of the flash method for fabricating CoAF and CuAF nanocomposites

Finally, additional ferromagnetic (cobalt) and para-
magnetic (copper) elements were introduced to sil-
ver–magnetite nanoparticles, and their effects on the
silver–magnetite particles were studied to produce var-
ious nanocomposites. The resulting nanocomposites
with concentration 0.5, 0.5 cobalt nanoferrite/0.5 sil-
ver–magnetite (0.5 CoFe2O4/0.5 Ag–Fe3O4) (CoAF)
and 0.5 copper nanoferrite/0.5 silver–magnetite (0.5
CuFe2O4/0.5Ag–Fe3O4) (CuAF) were more enhanced
than those in previous studies [17], and the enhance-
ment was greater in CoAF than in CuAF. The present
work investigates the structural, magnetic, and antimi-
crobial properties of the CoAF and CuAF nanocompos-
ites that can be applied in many technological applica-
tions.

2 Experimental details

2.1 Sample preparation

Figure 1 shows the preparation method of the CoAF
and CuAF nanocomposites, which is based on the flash
auto-combustion technique. First, the silver–magnetite
nanoparticles (Ag–Fe3O4) were prepared by mixing the
metal nitrates (silver nitrate and iron III nitrate) with
urea at the stoichiometric ratio and a small amount
of distilled water for 0.5 h. This mixture was heated
at 500 °C to form a fine powder ground for 1 h. Sec-
ond, the flash method prepared the cobalt and cop-
per nanoferrites. For this purpose, the metal nitrates
(cobalt and iron III for cobalt nanoferrite and copper
and iron III nitrates for copper nanoferrite) were mixed
with urea and a small amount of distilled water for
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Fig. 2 XRD patterns of
the CoAF and CuAF
nanocomposites
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Table 1 Crystallite sizes from XRD patterns, particle sizes obtained from AFM images, roughness, unit cell parameters,
and volume parameters of the CoAF and CuAF nanocomposites

Sample Crystallite size (nm) Particle size AFM (nm) Roughness (μm)

0.5CoFe2O4/0.5Ag–Fe3O4 59.1 147.49 1.27

0.5CuFe2O4/ 0.5Ag–Fe3O4 44.3 73.83 1.41

0.5 h, heated at 500 °C to yield a fine powder, then
ground for 1 h. Finally, cobalt nanoferrite was added
to silver–magnetite at a stoichiometric concentration
ratio of 0.5: 0.5 and ground for 0.5 h to form the
0.5 cobalt nanoferrite/0.5 silver–magnetite nanocom-
posite (0.5 CoFe2O4/0.5 Ag–Fe3O4) (CoAF). The 0.5

copper nanoferrite/0.5 silver–magnetite nanocompos-
ite (0.5 CuFe2O4/0.5Ag–Fe3O4) (CuAF) was prepared
similarly.

Fig. 3 FTIR spectra of the
CoAF and CuAF
nanocomposites
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Fig. 4 AFM micrographs
and plane images of the
CoAF and CuAF
nanocomposites

Table 2 FTIR results of the CoAF and CuAF nanocomposites

No. of peaks 1 2 3 4 5 6 7 8

0.5CoFe2O4/0.5Ag–Fe3O4 415.6 566.0 826.3 1620.9 1762.6 2362.4 3138.6 3708.4

0.5CuFe2O4/0.5Ag–Fe3O4 422.3 558.3 828.3 1620.8 1765.5 2362.3 3121.2 3747.0

2.2 Characterization

The samples were characterized by X-ray diffrac-
tion (XRD) (Diano Corporation), Fourier transforms
infrared spectroscopy (FTIR) (Jasco FTIR 300 E Spec-
trometer), and atomic force microscopy (AFM) (Non-
Contact Mode of Wet–SPM-9600). Magnetic measure-
ments were taken on a Lake Shore 7410 magnetometer.

2.3 Antimicrobial measurements

The Kirby method measured the antimicrobial prop-
erties in vitro [18]. The tested bacteria were the
Gram-positive species Bacillus subtilis (ATCC 6051),
Staphylococcus aureus (ATCC 12600), Streptococcus
faecalis (ATCC 19433) and the Gram-negative species
Escherichia coli (ATCC 11775), Pseudomonas aerugi-
nosa (ATCC 10145), and Neisseria gonorrhea (ATCC
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Fig. 5 Histograms of
average particle sizes and
roughness values of the
CuAF nanocomposite

19424). The tested fungi were Candida albicans (ATCC
7102) and Aspergillus fulvous (ATCC9643). The inhi-
bition zone diameters were measured after incubating
the samples at 30 °C for 24–48 h. Statistical analysis
was required for the result using ANOVA and post-hoc
Turkey test to compare between the groups. The data
are represented as mean value and standard deviation.
The significance of the P value was considered when it
was equal to or less than 0.05.

3 Results and discussion

3.1 X-ray diffraction pattern analysis (XRD)

Figure 2 shows the XRD patterns of the CoAF and
CuAF nanocomposites. The diffraction peaks were
indexed to ICDD card numbers (04-004-6436) for sil-
ver nanoparticles, (01-084-9338) for magnetite, (04-005-
7078) for cobalt nanoferrite, and (00-006-0545) for cop-
per nanoferrite. The broadness of the XRD peaks evi-
denced the small sizes of the investigated samples. The
crystallite sizes (see Table 1) were calculated using the
following Debye–Scherrer equation [19–21]:

D =
Kλ

B cos θ
(1)
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Fig. 6 Magnetic hysteresis
loops of the CoAF and
CuAF nanocomposites at
300 K
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where K is the shape factor (0.9 in the present case), B
is the full width at half maximum, and λ is the wave-
length of Cu-kα (1.54 Å). The crystallite size of the
investigated samples is also reported in Table 1 and
shows that the investigated samples are in the nanoscale
range.

3.2 Fourier transform infrared analysis (FTIR)

Figure 3 and Table 2 show the FTIR spectra of
the CoAF and CuAF nanocomposites in the range
400–4000 cm−1. Peaks 1 and 2, which appeared in
the spectra of all ferrites, were attributed to stretch-
ing vibrations of the metal–oxygen bonds at the octa-
hedral B sites and tetrahedral A-sites, respectively [22].
Peak 3 was contributed by water molecules. Peaks 4 and
5 were attributed to C–O–C vibrations or possibly to

C=N vibrations from urea [23]. Peak 6 was assigned to
stretching vibrations of the OH group. Finally, peaks
7 and 8 were contributed by stretching vibrations of
the OH and NH groups, respectively. All FTIR results
were consistent with those of previous works [24]. Thus,
FTIR analyses assured the formation of the investigated
nanocomposite.

3.3 Atomic force microscopy analysis (AFM)

Figure 4a–d shows the three-dimensional and plane
images of AFM micrographs of the CoAF and CuAF
nanocomposites. It is observed from the micrographs
that agglomeration occurred for both samples because
no surfactant was applied during the preparation
method [25, 26]. Figure 5a–d shows the histogram of
the average particle size and the roughness extracted
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Fig. 7 Magnetic
susceptibility diagrams of
the CoAF and CuAF
nanocomposites
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Table 3 Magnetic constants of the CoAF and CuAF nanocomposites

Magnetic parameters H c (G) M s (emu/g) M r (emu/g) Squareness

(M r/M s)

Magnetocrystalline

anisotropy constant

k (erg/g)

Magnetic

susceptibility

χ (emu/g. G)

ω GHz)

0.5CoFe2O4/0.5Ag–Fe3O4 1117.3 24.333 8.5224 0.35023 27,742.1 0.00913 5.4

0.5CuFe2O4/0.5Ag–Fe3O4 196.59 8.7642 1.9415 0.22152 1758.1 0.0101 1.9

from the AFM micrographs using the IBM SPSS Statis-
tics 22 program. One can observe from Table 1 that
the average particle size of CoAF is larger than that
of CuAF nanocomposite, and this result is confirmed
by XRD analysis. In addition, the average particle
size of the CoAF and CuAF nanocomposite confirmed
the nanosize range of the nanosamples, as shown in
Table 1 and Fig. 5a, c. Moreover, Fig. 5b, d shows
that CuAF nanocomposite had larger roughness than

CoAF nanocomposite. This was attributed to the larger
surface activity of CuAF nanocomposite than that of
CoAF nanocomposite. As a result of XRD and AFM
analyses, the XRD patterns yielded a smaller size than
the AFM measurements because AFM obtains aggre-
gates of small crystallites, whereas XRD measures the
individual crystallites.
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3.4 Magnetic measurements

Figure 6 shows the magnetic hysteresis loops of
CoAF and CuAF nanocomposites at room temperature
(300 K) under a maximum applied field of 20 KG. All
samples showed ferromagnetic behavior. Table 3 reports
the magnetic parameters of the samples, namely, the
coercivity (H c), saturation magnetization (M s), rema-
nent magnetization (M r), squareness (R), and magne-
tocrystalline anisotropy constant (k). The coercivity of
the CoAF nanocomposite was 5.7-fold larger than that
of CuAF (Fig. 6 and Table 3), implying that CoAF can
be applied as a permanent magnet. The large H c was
attributed to the 15.8-fold higher magnetocrystalline
anisotropy constant of the CoAF nanocomposite than
the CuAF nanocomposite. The k was calculated as [27,
28]

k =
MsHc

0.98
(2)

Moreover, the saturation magnetization M s was 2.8-
fold higher in the CoAF nanocomposite than in the
CuAF nanocomposite. This result can be explained by
the different magnetic behaviors of the nanocomposites:
the cobalt in CoAF is ferromagnetic, whereas the cop-
per in CuAF is paramagnetic. As reported in previous
work, materials with high M s confer high antimicrobial
properties [37]. As discussed below, the samples inves-
tigated in this study also showed strong antimicrobial
activities. The squareness R was calculated as [29, 30]

R =
Mr

Ms
(3)

As shown in Table 3, the squareness was 1.6-fold
larger in the CoAF nanocomposite than in the CuAF
nanocomposite. This result is directly related to the
remanent magnetization, which was 4.4-fold higher in
the CoAF nanocomposite than in the CuAF nanocom-
posite as the squareness was below 0.5 in both samples
the particles interacted by magnetostatic interactions.

Figure 7 shows the field dependences of the magnetic
susceptibilities of the CoAF and CuAF nanocompos-
ites. The magnetic susceptibility (χ) was calculated by
differentiating the magnetization to the applied field
[31]:

χ =
dM

dH
(4)

The values are reported in Table 3. The very large
χ values under zero-field well agreed with those of a
previous report [32]. The χ was 1.1-fold higher in the
CuAF nanocomposite than in the CoAF because the
latter undergoes inefficient exchange coupling between
the soft and hard magnetic phases [33, 34]. However,
the width was larger in the CoAF nanocomposite than
in the CuAF nanocomposite, again owing to the 5.7-
fold higher H c of the CoAF nanocomposite than the
CuAF nanocomposite.
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Fig. 8 Operating frequency diagrams of the CoAF and
CuAF nanocomposites

3.5 High-frequency application

The operating frequencies (ω) of the CoAF nanocom-
posite were obtained from magnetic measurements [35]
and are shown in Fig. 8. The operational frequency was
estimated as follows [36, 37]:

ω = 8π2γM (5)

where γ = 2.8 MHz/G is the gyromagnetic ratio. Table
3 summarizes the results. The operating frequency
of the CoAF nanocomposite was 2.8-fold higher than
that of the CuAF nanocomposite, indicating that the
CoAF nanocomposite has a 2.8-fold higher M s than
the CuAF nanocomposite. Both samples seem to have
potential in a variety of applications. The CoAF and
CuAF nanocomposites’ operating frequencies (5.4 and
1.9 GHz, respectively; see Table 3) could be applied
in the microwave super-high-frequency C-band and
microwave super-high-frequency S-band. The operat-
ing frequencies help evaluate the performance of nan-
odevices that operate in the high-frequency bands. It’s
worth noting that the operating frequency is influenced
by both the device’s saturation magnetization and its
shape. It is reported that microwave radiation with fre-
quencies from 0.3 to 300 GHz damage the microbial cul-
tures [38]. Thus, it is strongly recommended to apply
the present study nanocomposite in microwave super-
high frequency and use it to kill different bacteria.

123



Eur. Phys. J. Spec. Top. (2023) 232:1339–1351 1347

Bacillus Subtilis Streptococcus faecalis Neisseria gonorrhoeae

Staphylococcus aureus Escherichia coli Pseudomonas aeruginosa

0.5CoFe2O4/0.5 Ag-Fe3O4

Fig. 9 Antimicrobial activities images of the CoAF nanocomposite

3.6 Antimicrobial study

The antibacterial and antifungal activities of the CoAF
and CuAF nanocomposites are shown in Figs. 9, 10,
and 11. The bacteria that were examined included both
Gram-positive and Gram-negative species, as can be
seen in Table 4. Moreover, Table 4 shows the data
collected as mean and standard deviation values, and
statistics were done to assure that there is a significant
difference between the investigated samples in which
the P value was less than 0.05. The different lowercase
letters in the same row indicate that there is a signif-
icant difference (P < 0.05). However, the similar low-
ercase letter between the row indicates that there is no
significant difference (P > 0.05). The investigated sam-
ples demonstrated strong activity against both bacte-
rial types (Gram-positive and Gram-negative) because
silver nanoparticles destroy the DNA of bacterial cell
membranes [39–42]. However, both samples did not
work against the tested fungi. It is clear from look-
ing at the numbers that the activity that the CoAF
nanocomposite exhibited against the microorganisms
Staphylococcus aureus and Escherichia coli was much
higher than that of the CuAF nanocomposite. CuAF
nanocomposite, on the other hand, had a higher level

of effectiveness against Streptococcus faecalis and Pseu-
domonas aeruginosa bacteria. As a result, the investi-
gated nanomaterials are strongly recommended to be
used as alternative antibacterial nanomaterials for var-
ious drugs.

4 Conclusion

CoAF and CuAF nanocomposites were successfully pre-
pared by a facile flash method. The structural charac-
terizations confirmed the nanoscale range of the parti-
cle sizes. Meanwhile, the magnetic properties showed a
5.7-fold and 2.8-fold higher coercivity and saturation
magnetization, respectively, in CoAF than in CuAF
nanocomposite, implying that CoAF is a permanent
magnet material. The operating frequencies of both
samples showed that CoAF and CuAF could be applied
in the microwave super-high-frequency C-band and
the microwave super-high-frequency S-band, respec-
tively. Finally, both samples showed strong antibac-
terial efficacy against the tested Gram-positive and
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Bacillus Subtilis
Streptococcus faecalis

Neisseria gonorrhoeae

Staphylococcus aureus Escherichia coli Pseudomonas aeruginosa

0.5CuFe2O4/0.5 Ag-Fe3O4

Fig. 10 Antimicrobial activities images of the CuAF nanocomposite

Fig. 11 Antimicrobial
activity comparisons of the
CoAF and CuAF
nanocomposites and
standard antibacterial and
antifungal agents
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Gram-negative species. Thus, they are potentially rec-
ommended to be used as antibacterial nanomaterials in
biomedical applications.
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