Skip to main content
Log in

Alterations in electroosmotic slip velocity: combined effect of viscoelasticity and surface potential undulation

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In computational models of microchannel flows, the Helmholtz–Smoluchowski slip velocity boundary condition is often used because it approximates the motion of the electric double layer without resolving the charge density profiles close to the walls while drastically reducing the computational effort needed for the flow model to be solved. Despite working well for straight channel flow of Newtonian fluids, the approximation does not work well for flow involving complex fluids and spatially varying surface potential distribution. To treat these effects using the slip velocity boundary condition, it is necessary to understand how the surface potential and fluid properties affect the slip velocity. The present analysis shows the existence of a modified electroosmotic slip velocity for viscoelastic fluids, which is strongly dependent upon Deborah number and viscosity ratio, and this modification differs significantly from the slip velocity of Newtonian fluids. An augmentation of fluid elasticity results in an asymmetric distribution of slip velocity. Nonintuitively, the modulation wavelength of the imposed surface potential contributes to changing the slip velocity magnitude and adding periodicity to the solution. The proposed electroosmotic slip velocity for viscoelastic fluid can be used in computational models of microchannel flows to approximate the motion of the electric double layer without resolving the charge density profiles close to the walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

\(c_0\) :

Ionic concentration of ions (Mol)

d :

Wavelength of charge modulation (m)

D :

Diffusivity of the ions (m\(^2\)/s)

\({\textbf{D}}\) :

Deformation rate tensor (s\(^{-1}\))

De:

Deborah number

e :

Protonic charge (C)

\(E_0\) :

Applied axial electric field (V/m)

H :

Half height of the channel (m)

\(k_{\mathrm{B}}\) :

Boltzmann constant

L :

Length of the channel (m)

m :

Parameter denoting strength of potential modulation at the wall

n :

Parameter denoting wavelength of potential modulation at the wall

p :

Fluid pressure (Pa)

Pe:

Péclet number

Re:

Reynolds number

T :

Absolute temperature (K)

\(u_{\mathrm{HS}}\) :

Helmholtz–Smoluchowski slip velocity (m/s)

\(u_{\mathrm{s}}\) :

Electroosmotic slip velocity (m/s)

\({\textbf{v}}\) :

Advection velocity field (m/s)

\(V_0\) :

Externally applied voltage difference along the channel (V)

xy :

Space coordinates (m)

z :

Valency of both the ions

\(\beta\) :

Viscosity ratio/retardation ratio

\(\delta\) :

Ratio of Debye length to half height of the channel

\(\epsilon\) :

Permittivity of the medium (F/m)

\(\eta\) :

Viscosity of the fluid (Pa s)

\(\eta _{\mathrm{p}}\) :

Polymeric viscosity (Pa s)

\(\eta _{\mathrm{s}}\) :

Solvent viscosity (Pa s)

\(\lambda\) :

Relaxation time (s)

\(\lambda _{\mathrm{D}}\) :

Debye length (m)

\(\lambda _{\mathrm{r}}\) :

Retardation time (s)

\(\psi\) :

Potential due to diffuse charges (The EDL potential) (V)

\(\rho\) :

Density of the fluid (kg/m\(^3\))

\(\overline{\overline{\mathbf {\tau }}}\) :

Fluid stresses (Pa)

\(\theta\) :

Phase angle of potential distribution

\(\Upsilon\) :

A generic variable

\(\zeta _0\) :

Intrinsic/excess induced potential at the surface-“Zeta Potential” (V)

c:

Characteristic value

\(\sim\) :

Non-dimensional quantities in the inner layer

–:

Non-dimensional quantities in the outer layer

EDL:

Electrical double layer

EOF:

Electroosmotic flow

References

  1. S. Shoji, S. Nakagawa, M. Esashi, Micropump and sample-injector for integrated chemical analyzing systems. Sens. Actuators A Phys. 21(1–3), 189–192 (1990)

    Article  Google Scholar 

  2. H.A. Stone, A.D. Stroock, A. Ajdari, Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411 (2004)

    Article  ADS  MATH  Google Scholar 

  3. SJ Lee and SangYup Lee, Micro total analysis system (\(\mu\)-tas) in biotechnology. Appl. Microbiol. Biotechnol. 64(3), 289–299 (2004)

    Article  Google Scholar 

  4. T.S. Kaminski, P. Garstecki, Controlled droplet microfluidic systems for multistep chemical and biological assays. Chem. Soc. Rev. 46(20), 6210–6226 (2017)

    Article  Google Scholar 

  5. M. Moyers-Gonzalez, R.G. Owens, J. Fang, A non-homogeneous constitutive model for human blood. Part 1. Model derivation and steady flow. J. Fluid Mech. 617, 327–354 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. H. Fam, J.T. Bryant, M. Kontopoulou, Rheological properties of synovial fluids. Biorheology 44(2), 59–74 (2007)

    Google Scholar 

  7. J.G. Oldroyd, Non-newtonian effects in steady motion of some idealized elastico-viscous liquids. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 245(1241), 278–297 (1958)

    ADS  MathSciNet  MATH  Google Scholar 

  8. N. Phan-Thien, A nonlinear network viscoelastic model. J. Rheol. 22(3), 259–283 (1978)

    Article  ADS  MATH  Google Scholar 

  9. W. Yupan, Y. Ren, Y. Tao, H. Jiang, Fluid pumping and cells separation by dc-biased traveling wave electroosmosis and dielectrophoresis. Microfluid. Nanofluid. 21(3), 1–11 (2017)

    Google Scholar 

  10. Y. Jiang, H. Qi, X. Huanying, X. Jiang, Transient electroosmotic slip flow of fractional oldroyd-b fluids. Microfluid. Nanofluid. 21(1), 1–10 (2017)

    Article  Google Scholar 

  11. A. Mehboudi, M. Noruzitabar, M. Mehboudi, Simulation of mixed electroosmotic/pressure-driven flows by utilizing dissipative particle dynamics. Microfluid. Nanofluid. 17(1), 199–215 (2014)

    Article  Google Scholar 

  12. J.H. Masliyah, S. Bhattacharjee, Electrokinetic and Colloid Transport Phenomena (Wiley, New York, 2006)

    Book  Google Scholar 

  13. R.J. Hunter, Zeta Potential in Colloid Science: Principles and Applications, vol. 2 (Academic Press, Cambridge, 2013)

    Google Scholar 

  14. S. Bhattacharyya, N. Bag, Enhanced electroosmotic flow and ion selectivity in a channel patterned with periodically arranged polyelectrolyte-filled grooves. Microfluid. Nanofluid. 23(3), 1–15 (2019)

    Article  Google Scholar 

  15. L. Song, P. Jagdale, Yu. Liandong, Z. Liu, C. Zhang, R. Gao, X. Xuan, Electrokinetic instabilities in co-flowing ferrofluid and buffer solutions with matched electric conductivities. Microfluid. Nanofluid. 22(11), 1–10 (2018)

    Article  Google Scholar 

  16. V. Hoshyargar, M. Talebi, S.N. Ashrafizadeh, A. Sadeghi, Hydrodynamic dispersion by electroosmotic flow of viscoelastic fluids within a slit microchannel. Microfluid. Nanofluid. 22(1), 1–15 (2018)

    Article  Google Scholar 

  17. D.T. Kumar, Y. Zhou, V. Brown, X. Lu, A. Kale, L. Yu, X. Xuan, Electric field-induced instabilities in ferrofluid microflows. Microfluid. Nanofluid. 19(1), 43–52 (2015)

    Article  Google Scholar 

  18. C. Zhao, C. Yang, Electrokinetics of non-newtonian fluids: a review. Adv. Colloid Interface Sci. 201, 94–108 (2013)

    Article  ADS  Google Scholar 

  19. Z. Lv, L. Zhang, W. Hao, Y. Wang, J. Li, Induced charge electroosmosis characteristics of viscoelastic fluid around a metal cylinder. Colloids Surf. A Physicochem. Eng. Asp. 623, 126727 (2021)

    Article  Google Scholar 

  20. N.P. Thien, R.I. Tanner, A new constitutive equation derived from network theory. J. Non Newtonian Fluid Mech. 2(4), 353–365 (1977)

    Article  MATH  Google Scholar 

  21. B. Mahapatra, A. Bandopadhyay, Effect of skimming layer in an electroosmotically driven viscoelastic fluid flow over charge modulated walls. Electrophoresis 43(5–6), 724–731 (2022)

    Article  Google Scholar 

  22. E. Jimenez, J. Escandón, F. Méndez, O. Bautista, Combined viscoelectric and steric effects on the electroosmotic flow in nano/microchannels with heterogeneous zeta potentials. Colloids Surf. A Physicochem. Eng. Asp. 577, 347–359 (2019)

    Article  Google Scholar 

  23. A.A. Yazdi, A. Sadeghi, M.H. Saidi, Steric effects on electrokinetic flow of non-linear biofluids. Colloids Surf. A Physicochem. Eng. Asp. 484, 394–401 (2015)

    Article  Google Scholar 

  24. B. Mahapatra, A. Bandopadhyay, Effect of skimming layer in an electroosmotically driven viscoelastic fluid flow over charge modulated walls. Electrophoresis 43, 724–731 (2021)

    Article  Google Scholar 

  25. B. Mahapatra, A. Bandopadhyay, Numerical analysis of combined electroosmotic-pressure driven flow of a viscoelastic fluid over high zeta potential modulated surfaces. Phys. Fluids 33(1), 012001 (2021)

    Article  ADS  Google Scholar 

  26. A. Ramos, H. Morgan, N.G. Green, A. Castellanos, Ac electrokinetics: a review of forces in microelectrode structures. J. Phys. D Appl. Phys. 31(18), 2338 (1998)

    Article  ADS  Google Scholar 

  27. U. Ghosh, S. Chakraborty, Electroosmosis of viscoelastic fluids over charge modulated surfaces in narrow confinements. Phys. Fluids 27(6), 062004 (2015)

    Article  ADS  Google Scholar 

  28. B. Mahapatra, A. Bandopadhyay, Electroosmosis of a viscoelastic fluid over non-uniformly charged surfaces: effect of fluid relaxation and retardation time. Phys. Fluids 32(3), 032005 (2020)

    Article  ADS  Google Scholar 

  29. B. Mahapatra, A. Bandopadhyay, Microconfined electroosmotic flow of a complex fluid with asymmetric charges: interplay of fluid rheology and physicochemical heterogeneity. J. Non Newtonian Fluid Mech. 289, 104479 (2021)

    Article  MathSciNet  Google Scholar 

  30. G.Y. Tang, C. Yang, C.J. Chai, H.Q. Gong, Modeling of electroosmotic flow and capillary electrophoresis with the joule heating effect: the Nernst–Planck equation versus the Boltzmann distribution. Langmuir 19(26), 10975–10984 (2003)

    Article  Google Scholar 

  31. G.Y. Tang, C. Yang, J.C. Chai, H.Q. Gong, Joule heating effect on electroosmotic flow and mass species transport in a microcapillary. Int. J. Heat Mass Transf. 47(2), 215–227 (2004)

    Article  MATH  Google Scholar 

  32. K. Horiuchi, P. Dutta, Joule heating effects in electroosmotically driven microchannel flows. Int. J. Heat Mass Transf. 47(14–16), 3085–3095 (2004)

    Article  MATH  Google Scholar 

  33. J.M. MacInnes, X. Du, R.W.K. Allen, Prediction of electrokinetic and pressure flow in a microchannel t-junction. Phys. Fluids 15(7), 1992–2005 (2003)

    Article  ADS  MATH  Google Scholar 

  34. W.B. Zimmerman, J.M. Rees, T.J. Craven, Rheometry of non-newtonian electrokinetic flow in a microchannel t-junction. Microfluid. Nanofluid. 2(6), 481–492 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya Bandopadhyay.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Appendix 1: Stress components of various order of asymptotic series expansion

Appendix 1: Stress components of various order of asymptotic series expansion

In order to assess the flow velocity, we need to first obtain the stress components from the Oldroyd-B constitutive equations after expanding the terms asymptotically. Here, for the inner layer, we have presented the normal and shear stress components for various order of corrections.

1.1 Constitutive relation for the \(O(\beta ^2)\) stress components

The constitutive relation for the \(O(\beta ^2)\) stress components in the inner layer becomes

$$\begin{aligned} \begin{aligned} \boxed {{\widetilde{\tau }}_{xx,02}}=0; \quad \boxed {\widetilde{\tau }_{xy,02}}=\frac{\partial {\widetilde{u}}_{02}}{\partial \widetilde{y}}; \quad \boxed {{\widetilde{\tau }}_{yy,02}}=2\frac{\partial \widetilde{v}_{02}}{\partial {\widetilde{y}}} \end{aligned} \end{aligned}$$
(30)

here, \({\widetilde{\tau }}_{xx,02}\) becomes zero and \(\widetilde{\tau }_{xy,02}\) and \({\widetilde{\tau }}_{yy,02}\) have dependency on \(O(\beta ^2)\) velocity components only.

1.2 Constitutive relation for the \(O(\mathrm{{De}}\beta ^2)\) stress components

We move towards obtaining the constitutive relation for the \(O(\mathrm{{De}}\beta ^2)\) stress components in the inner layer, which reads

$$\begin{aligned} \boxed {{\widetilde{\tau }}_{xx,{12}}}&=-4\frac{\partial {\widetilde{u}}_0}{\partial {\widetilde{x}}}\frac{\partial {\widetilde{u}}_{01}}{\partial {\widetilde{y}}} +2\frac{\partial {\widetilde{u}}_0}{\partial {\widetilde{x}}}{\widetilde{\tau }}_{xx,{02}}+2\frac{\partial {\widetilde{u}}_0}{\partial {\widetilde{y}}}{\widetilde{\tau }}_{xy,{02}}\\&\quad +2\frac{\partial {\widetilde{u}}_{01}}{\partial {\widetilde{x}}}{\widetilde{\tau }}_{xx,01}+2\frac{\partial {\widetilde{u}}_{01}}{\partial {\widetilde{y}}}{\widetilde{\tau }}_{xy,01} \\ &\quad +2\frac{\partial {\widetilde{u}}_{02}}{\partial {\widetilde{x}}}{\widetilde{\tau }}_{xx,0}+2\frac{\partial {\widetilde{u}}_{02}}{\partial {\widetilde{y}}}{\widetilde{\tau }}_{xy,0}\\&\quad -\frac{\partial {\widetilde{\tau }}_{xx,0}}{\partial {\widetilde{x}}}{\widetilde{u}}_{02}-\frac{\partial {\widetilde{\tau }}_{xx,0}}{\partial {\widetilde{y}}}{\widetilde{v}}_{02}\\ &\quad -\frac{\partial {\widetilde{\tau }}_{xx,01}}{\partial {\widetilde{x}}}{\widetilde{u}}_{01}-\frac{\partial {\widetilde{\tau }}_{xx,01}}{\partial {\widetilde{y}}}{\widetilde{v}}_{01}\\&\quad -\frac{\partial {\widetilde{\tau }}_{xx,{02}}}{\partial {\widetilde{x}}}{\widetilde{u}}_0-\frac{\partial {\widetilde{\tau }}_{xx,{02}}}{\partial {\widetilde{y}}}{\widetilde{v}}_0\\ \boxed {{\widetilde{\tau }}_{xy,{12}}}&=\frac{\partial {\widetilde{u}}_{12}}{\partial {\widetilde{y}}}-2\frac{\partial {\widetilde{u}}_0}{\partial {\widetilde{y}}}\frac{\partial {\widetilde{v}}_{01}}{\partial {\widetilde{y}}} +\frac{\partial ^2 {\widetilde{u}}_0}{\partial {\widetilde{y}} \partial {\widetilde{x}}}{\widetilde{u}}_{01}+\frac{\partial ^2 {\widetilde{u}}_0}{\partial {\widetilde{y}}^2}{\widetilde{v}}_{01}\\&\quad +\frac{\partial ^2 {\widetilde{u}}_{01}}{\partial {\widetilde{y}} \partial {\widetilde{x}}}{\widetilde{u}}_{0}+\frac{\partial ^2 {\widetilde{u}}_{01}}{\partial {\widetilde{y}}^2}{\widetilde{v}}_{0} +\frac{\partial {\widetilde{u}}_0}{\partial {\widetilde{y}}}{\widetilde{\tau }}_{yy,{02}}+\frac{\partial {\widetilde{u}}_{01}}{\partial {\widetilde{y}}}{\widetilde{\tau }}_{yy,01}\\&\quad +\frac{\partial {\widetilde{u}}_{02}}{\partial {\widetilde{y}}}{\widetilde{\tau }}_{yy,0}+\frac{\partial {\widetilde{v}}_0}{\partial {\widetilde{x}}}{\widetilde{\tau }}_{xx,{02}} +\frac{\partial {\widetilde{v}}_{01}}{\partial {\widetilde{x}}}{\widetilde{\tau }}_{xx,01}+\frac{\partial {\widetilde{v}}_{02}}{\partial {\widetilde{x}}}{\widetilde{\tau }}_{xx,0}\\&\quad -\frac{\partial {\widetilde{\tau }}_{xy,0}}{\partial {\widetilde{x}}}{\widetilde{u}}_{02}-\frac{\partial {\widetilde{\tau }}_{xy,0}}{\partial {\widetilde{y}}}{\widetilde{v}}_{02} -\frac{\partial {\widetilde{\tau }}_{xy,01}}{\partial {\widetilde{x}}}{\widetilde{u}}_{01}-\frac{\partial {\widetilde{\tau }}_{xy,01}}{\partial {\widetilde{y}}}{\widetilde{v}}_{01}\\ &\quad-\frac{\partial {\widetilde{\tau }}_{xy,{02}}}{\partial {\widetilde{x}}}{\widetilde{u}}_0 -\frac{\partial {\widetilde{\tau }}_{xy,{02}}}{\partial {\widetilde{y}}}{\widetilde{v}}_0\\ \boxed {{\widetilde{\tau }}_{yy,{12}}}&=2\frac{\partial \widetilde{v}_{12}}{\partial {\widetilde{y}}} +2\frac{\partial ^2 \widetilde{v}_0}{\partial {\widetilde{y}} \partial {\widetilde{x}}}\widetilde{u}_{01}+2\frac{\partial ^2 {\widetilde{u}}_0}{\partial \widetilde{y}^2}{\widetilde{v}}_{01}\\&\quad +2\frac{\partial ^2 {\widetilde{v}}_{01}}{\partial {\widetilde{y}} \partial {\widetilde{x}}}{\widetilde{u}}_{0}+\frac{\partial ^2 {\widetilde{v}}_{01}}{\partial {\widetilde{y}}^2}\widetilde{v}_0-8\frac{\partial {\widetilde{v}}_0}{\partial \widetilde{y}}\frac{\partial {\widetilde{v}}_{01}}{\partial \widetilde{y}}\\ &\quad -2\frac{\partial {\widetilde{u}}_{01}}{\partial \widetilde{y}}\frac{\partial {\widetilde{v}}_0}{\partial \widetilde{x}}-2\frac{\partial {\widetilde{u}}_0}{\partial \widetilde{y}}\frac{\partial {\widetilde{v}}_{01}}{\partial \widetilde{x}}\\&\quad +2\frac{\partial {\widetilde{v}}_0}{\partial {\widetilde{x}}}\widetilde{\tau }_{xy,{02}}+2\frac{\partial {\widetilde{v}}_0}{\partial \widetilde{y}}{\widetilde{\tau }}_{yy,{02}}+2\frac{\partial \widetilde{v}_{01}}{\partial {\widetilde{x}}}\widetilde{\tau }_{xy,01}\\&\quad +2\frac{\partial {\widetilde{v}}_{01}}{\partial \widetilde{y}}{\widetilde{\tau }}_{yy,01} +2\frac{\partial \widetilde{v}_{02}}{\partial {\widetilde{x}}}{\widetilde{\tau }}_{xy,0}\\&\quad +2\frac{\partial {\widetilde{v}}_{02}}{\partial {\widetilde{y}}}\widetilde{\tau }_{yy,0}-\frac{\partial {\widetilde{\tau }}_{yy,0}}{\partial {\widetilde{x}}}{\widetilde{u}}_{02} -\frac{\partial \widetilde{\tau }_{yy,0}}{\partial {\widetilde{y}}}{\widetilde{v}}_{02}\\&\quad-\frac{\partial {\widetilde{\tau }}_{yy,01}}{\partial {\widetilde{x}}}\widetilde{u}_{01} -\frac{\partial {\widetilde{\tau }}_{yy,01}}{\partial \widetilde{y}}{\widetilde{v}}_{01}\\&\quad -\frac{\partial \widetilde{\tau }_{yy,{02}}}{\partial {\widetilde{x}}}{\widetilde{u}}_0-\frac{\partial {\widetilde{\tau }}_{yy,{02}}}{\partial {\widetilde{y}}}{\widetilde{v}}_0 \end{aligned}$$
(31)

here, the normal stress component \({\widetilde{\tau }}_{xx,{12}}\) is dependent on the leading order, \(O(\beta )\), and \(O(\beta ^2)\) stress and velocity components. The other two stress components i.e. \({\widetilde{\tau }}_{xy,{12}}\) and \({\widetilde{\tau }}_{yy,{12}}\) depend on the \(O(\mathrm{{De}}\beta ^2)\) velocity component along with the leading order, \(O(\beta )\), and \(O(\beta ^2)\) stress and velocity components.

1.3 Constitutive relation for the \(O(\mathrm{{De}}^2)\) stress components

We obtain the constitutive relation for the \(O(\mathrm{{De}}^2)\) stress components in the inner layer, which are

$$\begin{aligned} \boxed {{\widetilde{\tau }}_{xx,20}}&=-{\widetilde{u}}_0\frac{\partial {\widetilde{\tau }}_{xx,10}}{\partial {\widetilde{x}}}-{\widetilde{u}}_{10}\frac{\partial {\widetilde{\tau }}_{xx,0}}{\partial {\widetilde{x}}}\\&\quad -{\widetilde{v}}_0\frac{\partial {\widetilde{\tau }}_{xx,10}}{\partial {\widetilde{y}}}-{\widetilde{v}}_{10}\frac{\partial {\widetilde{\tau }}_{xx,0}}{\partial {\widetilde{y}}}\\&\quad +2{\widetilde{\tau }}_{xx,0}\frac{\partial {\widetilde{u}}_{10}}{\partial {\widetilde{x}}}+2{\widetilde{\tau }}_{xx,10}\frac{\partial {\widetilde{u}}_{0}}{\partial {\widetilde{x}}}\\&\quad +2{\widetilde{\tau }}_{xy,0}\frac{\partial {\widetilde{u}}_{10}}{\partial {\widetilde{y}}}+2{\widetilde{\tau }}_{xy,10}\frac{\partial {\widetilde{u}}_{0}}{\partial {\widetilde{y}}}\\ \boxed {{\widetilde{\tau }}_{xy,20}}&=\frac{\partial {\widetilde{u}}_{20}}{\partial {\widetilde{y}}}-u_0\frac{\partial {\widetilde{\tau }}_{xy,10}}{\partial {\widetilde{x}}}-{\widetilde{u}}_{10}\frac{\partial {\widetilde{\tau }}_{xy,0}}{\partial {\widetilde{x}}}\\&\quad -{\widetilde{v}}_0\frac{\partial {\widetilde{\tau }}_{xy,10}}{\partial {\widetilde{y}}}-{\widetilde{v}}_{10}\frac{\partial {\widetilde{\tau }}_{xy,0}}{\partial {\widetilde{y}}}\\&\quad +{\widetilde{\tau }}_{xx,0}\frac{\partial {\widetilde{v}}_{10}}{\partial {\widetilde{x}}}+{\widetilde{\tau }}_{xx,10}\frac{\partial {\widetilde{v}}_{0}}{\partial {\widetilde{x}}}+{\widetilde{\tau }}_{yy,0}\frac{\partial {\widetilde{u}}_{10}}{\partial {\widetilde{y}}}\\ &\quad +{\widetilde{\tau }}_{yy,10}\frac{\partial {\widetilde{u}}_{0}}{\partial {\widetilde{y}}}\\ \boxed {{\widetilde{\tau }}_{yy,20}}&=2\frac{\partial \widetilde{v}_{20}}{\partial {\widetilde{y}}}-{\widetilde{u}}_0\frac{\partial {\widetilde{\tau }}_{yy,10}}{\partial {\widetilde{x}}}\\&\quad -\widetilde{u}_{10}\frac{\partial {\widetilde{\tau }}_{yy,0}}{\partial \widetilde{x}}-{\widetilde{v}}_0\frac{\partial {\widetilde{\tau }}_{yy,10}}{\partial {\widetilde{y}}}-{\widetilde{v}}_{10}\frac{\partial \widetilde{\tau }_{yy,0}}{\partial {\widetilde{y}}}\\&\quad +2\widetilde{\tau }_{xy,0}\frac{\partial {\widetilde{v}}_{10}}{\partial \widetilde{x}}+2{\widetilde{\tau }}_{xy,10}\frac{\partial {\widetilde{v}}_{0}}{\partial {\widetilde{x}}}+2{\widetilde{\tau }}_{yy,0}\frac{\partial \widetilde{v}_{10}}{\partial {\widetilde{y}}}\\ & \quad +2\widetilde{\tau }_{yy,10}\frac{\partial {\widetilde{v}}_{0}}{\partial {\widetilde{y}}} \end{aligned}$$
(32)

here, the normal stress component \({\widetilde{\tau }}_{xx,20}\) is dependent on the leading order and \(O(\mathrm{{De}})\) stress and velocity components. The other two stress components i.e. \(\widetilde{\tau }_{xy,20}\) and \({\widetilde{\tau }}_{yy,20}\) depend on the \(O(\mathrm{{De}}^2)\) velocity component along with the leading order and \(O(\mathrm{{De}})\) stress and velocity components.

1.4 Constitutive relation for the \(O(\mathrm{{De}}^2\beta )\) stress components

Then we proceed to obtain the constitutive relation for the \(O(\mathrm{{De}}^2\beta )\) stress components in the inner layer, which are of the form   

$$\begin{aligned} \boxed {{\widetilde{\tau }}_{xx,{21}}}&=-4\frac{\partial {\widetilde{u}}_0}{\partial {\widetilde{y}}}\frac{\partial {\widetilde{u}}_{10}}{\partial {\widetilde{y}}}+2\frac{\partial {\widetilde{u}}_0}{\partial {\widetilde{x}}}{\widetilde{\tau }}_{xx,1}\\&\quad +2\frac{\partial {\widetilde{u}}_0}{\partial {\widetilde{y}}}{\widetilde{\tau }}_{xy,1}+2\frac{\partial {\widetilde{u}}_{01}}{\partial {\widetilde{x}}}{\widetilde{\tau }}_{xx,10}+2\frac{\partial {\widetilde{u}}_{01}}{\partial {\widetilde{y}}}{\widetilde{\tau }}_{xy,10}\\&\quad +2\frac{\partial {\widetilde{u}}_1}{\partial x}{\widetilde{\tau }}_{xx,0} +2\frac{\partial {\widetilde{u}}_{1}}{\partial {\widetilde{y}}}{\widetilde{\tau }}_{xy,0}+2\frac{\partial {\widetilde{u}}_{10}}{\partial {\widetilde{x}}}{\widetilde{\tau }}_{xx,01}\\&\quad +2\frac{\partial {\widetilde{u}}_{10}}{\partial {\widetilde{y}}}{\widetilde{\tau }}_{xy,01}-\frac{\partial {\widetilde{\tau }}_{xx,0}}{\partial {\widetilde{x}}}{\widetilde{u}}_1-\frac{\partial {\widetilde{\tau }}_{xx,0}}{\partial {\widetilde{y}}}{\widetilde{v}}_1\\&\quad -\frac{\partial {\widetilde{\tau }}_{xx,01}}{\partial {\widetilde{x}}}{\widetilde{u}}_{10}-\frac{\partial {\widetilde{\tau }}_{xx,01}}{\partial {\widetilde{y}}}{\widetilde{v}}_{10}-\frac{\partial {\widetilde{\tau }}_{xx,1}}{\partial {\widetilde{x}}}{\widetilde{u}}_0\\&\quad -\frac{\partial {\widetilde{\tau }}_{xx,1}}{\partial {\widetilde{y}}}{\widetilde{v}}_{0}-\frac{\partial {\widetilde{\tau }}_{xx,10}}{\partial {\widetilde{x}}}{\widetilde{u}}_{01}-\frac{\partial {\widetilde{\tau }}_{xx,10}}{\partial {\widetilde{y}}}{\widetilde{v}}_{01}\\ \boxed {{\widetilde{\tau }}_{xy,{21}}}&=\frac{\partial {\widetilde{u}}_{21}}{\partial {\widetilde{y}}}-2\frac{\partial {\widetilde{u}}_0}{\partial {\widetilde{y}}}\frac{\partial {\widetilde{v}}_{10}}{\partial {\widetilde{y}}}-2\frac{\partial {\widetilde{u}}_{10}}{\partial {\widetilde{y}}}\frac{\partial {\widetilde{v}}_{0}}{\partial {\widetilde{y}}}\\&\quad +\frac{\partial ^2 {\widetilde{u}}_0}{\partial {\widetilde{y}} \partial {\widetilde{x}}}{\widetilde{u}}_{10}+\frac{\partial ^2 {\widetilde{u}}_0}{\partial {\widetilde{y}}^2}{\widetilde{v}}_{10}+\frac{\partial ^2 {\widetilde{u}}_{10}}{\partial {\widetilde{y}} \partial {\widetilde{x}}}{\widetilde{u}}_{0}\\&\quad +\frac{\partial ^2 {\widetilde{u}}_{10}}{\partial {\widetilde{y}}^2}{\widetilde{v}}_{0}+\frac{\partial {\widetilde{u}}_0}{\partial {\widetilde{y}}}{\widetilde{\tau }}_{yy,1}+\frac{\partial {\widetilde{u}}_{01}}{\partial {\widetilde{y}}}{\widetilde{\tau }}_{yy,10}\\&\quad +\frac{\partial {\widetilde{u}}_1}{\partial {\widetilde{y}}}{\widetilde{\tau }}_{yy,0}+\frac{\partial {\widetilde{u}}_{10}}{\partial {\widetilde{y}}}{\widetilde{\tau }}_{yy,01}+\frac{\partial {\widetilde{v}}_0}{\partial {\widetilde{x}}}{\widetilde{\tau }}_{xx,1}\\&\quad +\frac{\partial {\widetilde{v}}_{01}}{\partial {\widetilde{x}}}{\widetilde{\tau }}_{xx,10}+\frac{\partial {\widetilde{v}}_1}{\partial {\widetilde{x}}}{\widetilde{\tau }}_{xx,0}\\&\quad +\frac{\partial {\widetilde{v}}_{10}}{\partial {\widetilde{x}}}{\widetilde{\tau }}_{xx,01}-\frac{\partial {\widetilde{\tau }}_{xy,0}}{\partial {\widetilde{x}}}{\widetilde{u}}_1-\frac{\partial {\widetilde{\tau }}_{xy,0}}{\partial {\widetilde{y}}}{\widetilde{v}}_1\\&\quad -\frac{\partial {\widetilde{\tau }}_{xy,01}}{\partial {\widetilde{x}}}{\widetilde{u}}_{10}-\frac{\partial {\widetilde{\tau }}_{xy,01}}{\partial {\widetilde{y}}}{\widetilde{v}}_{10}-\frac{\partial {\widetilde{\tau }}_{xy,01}}{\partial {\widetilde{x}}}{\widetilde{u}}_0\\&\quad -\frac{\partial {\widetilde{\tau }}_{xy,1}}{\partial {\widetilde{y}}}{\widetilde{v}}_0-\frac{\partial {\widetilde{\tau }}_{xy,10}}{\partial {\widetilde{x}}}{\widetilde{u}}_{01}-\frac{\partial {\widetilde{\tau }}_{xy,10}}{\partial {\widetilde{y}}}{\widetilde{v}}_{01}\\ \boxed {{\widetilde{\tau }}_{yy,{21}}}&=2\frac{\partial \widetilde{v}_{21}}{\partial {\widetilde{y}}}+2\frac{\partial ^2 \widetilde{v}_{10}}{\partial {\widetilde{y}}^2}{\widetilde{v}}_0\\&\quad +2\frac{\partial ^2 {\widetilde{v}}_{0}}{\partial {\widetilde{y}}^2}\widetilde{v}_{10}-8\frac{\partial {\widetilde{v}}_0}{\partial \widetilde{y}}\frac{\partial {\widetilde{v}}_{10}}{\partial \widetilde{y}}\\&\quad -2\frac{\partial {\widetilde{u}}_{10}}{\partial \widetilde{y}}\frac{\partial {\widetilde{v}}_0}{\partial \widetilde{x}}-2\frac{\partial {\widetilde{u}}_0}{\partial \widetilde{y}}\frac{\partial {\widetilde{v}}_{10}}{\partial \widetilde{x}}\\&\quad -2\frac{\partial {\widetilde{u}}_0}{\partial \widetilde{y}}\frac{\partial {\widetilde{v}}_{01}}{\partial \widetilde{x}}-\frac{\partial {\widetilde{\tau }}_{yy,1}}{\partial \widetilde{x}}{\widetilde{u}}_0-\frac{\partial {\widetilde{\tau }}_{yy,1}}{\partial {\widetilde{y}}}{\widetilde{v}}_0\\&\quad -\frac{\partial \widetilde{\tau }_{yy,10}}{\partial {\widetilde{x}}}{\widetilde{u}}_{01}-\frac{\partial {\widetilde{\tau }}_{yy,10}}{\partial {\widetilde{y}}}\widetilde{v}_{01}-\frac{\partial {\widetilde{\tau }}_{yy,0}}{\partial \widetilde{y}}{\widetilde{v}}_1\\&\quad -\frac{\partial \widetilde{\tau }_{yy,{01}}}{\partial {\widetilde{x}}}\widetilde{u}_{10}-\frac{\partial {\widetilde{\tau }}_{yy,01}}{\partial \widetilde{y}}{\widetilde{v}}_{10}+2\frac{\partial {\widetilde{v}}_{01}}{\partial {\widetilde{y}}}{\widetilde{\tau }}_{yy,10}\\&\quad +2\frac{\partial \widetilde{v}_{1}}{\partial {\widetilde{y}}}{\widetilde{\tau }}_{yy,0}+2\frac{\partial {\widetilde{v}}_{10}}{\partial {\widetilde{x}}}\widetilde{\tau }_{xy,01}+2\frac{\partial {\widetilde{v}}_{10}}{\partial \widetilde{y}}{\widetilde{\tau }}_{yy,01}\\&\quad -\frac{\partial \widetilde{\tau }_{yy,0}}{\partial {\widetilde{x}}}{\widetilde{u}}_1+2\frac{\partial ^2 {\widetilde{v}}_{0}}{\partial {\widetilde{y}} \partial \widetilde{x}}{\widetilde{u}}_{10}+2\frac{\partial ^2 {\widetilde{v}}_{10}}{\partial {\widetilde{y}} \partial {\widetilde{x}}}{\widetilde{u}}_{0}\\&\quad +2\frac{\partial {\widetilde{v}}_0}{\partial {\widetilde{x}}}\widetilde{\tau }_{xy,1}+2\frac{\partial {\widetilde{v}}_0}{\partial \widetilde{y}}{\widetilde{\tau }}_{yy,1}+2\frac{\partial {\widetilde{v}}_{01}}{\partial {\widetilde{x}}}{\widetilde{\tau }}_{xy,10} \end{aligned}$$
(33)

here, the normal stress component \({\widetilde{\tau }}_{xx,{21}}\) is dependent on the leading order, \(O(\mathrm{{De}})\), \(O(\beta )\) and \(O(\mathrm{{De}}\beta )\) stress and velocity components. The other two stress components i.e. \({\widetilde{\tau }}_{xy,{21}}\) and \({\widetilde{\tau }}_{yy,{21}}\) depend on the \(O(\mathrm{{De}}^2\beta )\) velocity component along with the leading order, \(O(\mathrm{{De}})\), \(O(\beta )\) and \(O(\mathrm{{De}}\beta )\) stress and velocity components.

1.5 Constitutive relation for the \(O(\mathrm{{De}}^2\beta ^2)\) stress components

Then we proceed to obtain the constitutive relation for the \(O(\mathrm{{De}}^2\beta ^2)\) stress components in the inner layer, which reads   

$$\begin{aligned} \boxed {{\widetilde{\tau }}_{xx,{22}}}&=-4\frac{\partial {\widetilde{u}}_0}{\partial {\widetilde{y}}}\frac{\partial {\widetilde{u}}_1}{\partial {\widetilde{y}}}-4\frac{\partial {\widetilde{u}}_{01}}{\partial {\widetilde{y}}}\frac{\partial {\widetilde{u}}_{10}}{\partial {\widetilde{y}}}\\&\quad +2\frac{\partial {\widetilde{u}}_{02}}{\partial {\widetilde{x}}}{\widetilde{\tau }}_{xx,10}+2\frac{\partial {\widetilde{u}}_0}{\partial {\widetilde{x}}}{\widetilde{\tau }}_{xx,{12}}+2\frac{\partial {\widetilde{u}}_{02}}{\partial {\widetilde{y}}}{\widetilde{\tau }}_{xy,10}\\&\quad +2\frac{\partial {\widetilde{u}}_{01}}{\partial {\widetilde{x}}}{\widetilde{\tau }}_{xx,1}-\frac{\partial {\widetilde{\tau }}_{xx,{12}}}{\partial {\widetilde{y}}}{\widetilde{v}}_0-\frac{\partial {\widetilde{\tau }}_{xx,{02}}}{\partial {\widetilde{x}}}{\widetilde{u}}_{10}\\&\quad +2\frac{\partial {\widetilde{u}}_{12}}{\partial {\widetilde{x}}}{\widetilde{\tau }}_{xx,0}+2\frac{\partial {\widetilde{u}}_{10}}{\partial {\widetilde{y}}}{\widetilde{\tau }}_{xy,{02}}+2\frac{\partial {\widetilde{u}}_{0}}{\partial {\widetilde{y}}}{\widetilde{\tau }}_{xy,{12}}\\&\quad -\frac{\partial {\widetilde{\tau }}_{xx,{12}}}{\partial {\widetilde{x}}}{\widetilde{u}}_0+2\frac{\partial {\widetilde{u}}_{12}}{\partial {\widetilde{y}}}{\widetilde{\tau }}_{xy,0}+2\frac{\partial {\widetilde{u}}_{10}}{\partial {\widetilde{x}}}{\widetilde{\tau }}_{xx,{02}}\\&\quad -\frac{\partial {\widetilde{\tau }}_{xx,01}}{\partial {\widetilde{y}}}{\widetilde{v}}_1-\frac{\partial {\widetilde{\tau }}_{xx,01}}{\partial {\widetilde{x}}}{\widetilde{u}}_1-\frac{\partial {\widetilde{\tau }}_{xx,1}}{\partial {\widetilde{x}}}{\widetilde{u}}_{01}\\&\quad +2\frac{\partial {\widetilde{u}}_1}{\partial {\widetilde{y}}}{\widetilde{\tau }}_{xy,01}+2\frac{\partial {\widetilde{u}}_{01}}{\partial {\widetilde{y}}}{\widetilde{\tau }}_{xy,1}-\frac{\partial {\widetilde{\tau }}_{xx,{02}}}{\partial {\widetilde{y}}}{\widetilde{v}}_{10}\\&\quad -\frac{\partial {\widetilde{\tau }}_{xx,10}}{\partial {\widetilde{x}}}{\widetilde{u}}_{{02}}-\frac{\partial {\widetilde{\tau }}_{xx,0}}{\partial {\widetilde{y}}}{\widetilde{v}}_{12}+2\frac{\partial {\widetilde{u}}_1}{\partial x}{\widetilde{\tau }}_{xx,01}\\&\quad -\frac{\partial {\widetilde{\tau }}_{xx,1}}{\partial {\widetilde{y}}}{\widetilde{v}}_{01}-\frac{\partial {\widetilde{\tau }}_{xx,10}}{\partial {\widetilde{y}}}{\widetilde{v}}_{{02}}-\frac{\partial {\widetilde{\tau }}_{xx,0}}{\partial {\widetilde{x}}}{\widetilde{u}}_{12}\\ \boxed {{\widetilde{\tau }}_{xy,{22}}}&=\frac{\partial \widetilde{u}_{22}}{\partial {\widetilde{y}}}+\frac{\partial ^2 \widetilde{u}_{01}}{\partial {\widetilde{y}} \partial {\widetilde{x}}}\widetilde{u}_{10}\\&\quad +\frac{\partial ^2 {\widetilde{u}}_{1}}{\partial {\widetilde{y}} \partial {\widetilde{x}}}{\widetilde{u}}_0+\frac{\partial ^2 \widetilde{u}_{10}}{\partial {\widetilde{y}} \partial {\widetilde{x}}}\widetilde{u}_{01}+\frac{\partial {\widetilde{u}}_1}{\partial \widetilde{y}}{\widetilde{\tau }}_{yy,01}-\frac{\partial \widetilde{\tau }_{xy,1}}{\partial {\widetilde{x}}}\widetilde{u}_{01}\\&\quad -\frac{\partial {\widetilde{\tau }}_{xy,{02}}}{\partial {\widetilde{x}}}{\widetilde{u}}_{10}+\frac{\partial \widetilde{v}_1}{\partial {\widetilde{x}}}{\widetilde{\tau }}_{xx,01}-\frac{\partial {\widetilde{\tau }}_{xy,{12}}}{\partial {\widetilde{y}}}\widetilde{v}_{0}\\&\quad +\frac{\partial {\widetilde{u}}_{01}}{\partial \widetilde{y}}{\widetilde{\tau }}_{yy,1}+\frac{\partial {\widetilde{u}}_0}{\partial {\widetilde{y}}}{\widetilde{\tau }}_{yy,{12}}-\frac{\partial \widetilde{\tau }_{xy,0}}{\partial {\widetilde{x}}}\widetilde{u}_{{12}}\\&\quad +\frac{\partial {\widetilde{u}}_{02}}{\partial \widetilde{y}}{\widetilde{\tau }}_{yy,10}+\frac{\partial {\widetilde{u}}_{12}}{\partial {\widetilde{y}}}{\widetilde{\tau }}_{yy,0}-\frac{\partial \widetilde{\tau }_{xy,10}}{\partial {\widetilde{x}}}{\widetilde{u}}_{02}\\&\quad +\frac{\partial {\widetilde{u}}_{10}}{\partial {\widetilde{y}}}\widetilde{\tau }_{yy,{02}}-\frac{\partial {\widetilde{\tau }}_{xy,1}}{\partial {\widetilde{y}}}{\widetilde{v}}_{01}+\frac{\partial \widetilde{v}_{02}}{\partial {\widetilde{x}}}\widetilde{\tau }_{xx,10}\\&\quad +\frac{\partial {\widetilde{v}}_{01}}{\partial \widetilde{x}}{\widetilde{\tau }}_{xx,1}+\frac{\partial {\widetilde{v}}_{10}}{\partial {\widetilde{x}}}{\widetilde{\tau }}_{xx,{02}}\\&\quad +\frac{\partial \widetilde{v}_{12}}{\partial {\widetilde{x}}}{\widetilde{\tau }}_{xx,0}-\frac{\partial {\widetilde{\tau }}_{xy,01}}{\partial {\widetilde{x}}}\widetilde{u}_{1}-\frac{\partial {\widetilde{\tau }}_{xy,10}}{\partial \widetilde{y}}{\widetilde{v}}_{02}\\&\quad -\frac{\partial \widetilde{\tau }_{xy,{12}}}{\partial {\widetilde{x}}}\widetilde{u}_{0}\\&\quad +\frac{\partial ^2 {\widetilde{u}}_1}{\partial \widetilde{y}^2}{\widetilde{v}}_{0}+\frac{\partial ^2 {\widetilde{u}}_{10}}{\partial {\widetilde{y}}^2}{\widetilde{v}}_{01}+\frac{\partial ^2 \widetilde{u}_0}{\partial {\widetilde{y}}^2}{\widetilde{v}}_{1}+\frac{\partial ^2 {\widetilde{u}}_{01}}{\partial {\widetilde{y}}^2}\widetilde{v}_{10}\\&\quad -\frac{\partial {\widetilde{\tau }}_{xy,01}}{\partial \widetilde{y}}{\widetilde{v}}_1-\frac{\partial {\widetilde{\tau }}_{xy,0}}{\partial {\widetilde{y}}}{\widetilde{v}}_{12}\\&\quad -\frac{\partial \widetilde{\tau }_{xy,{02}}}{\partial {\widetilde{y}}}\widetilde{v}_{10}+\frac{\partial {\widetilde{v}}_0}{\partial \widetilde{x}}{\widetilde{\tau }}_{xx,{12}}-2\frac{\partial \widetilde{u}_{01}}{\partial {\widetilde{y}}}\frac{\partial \widetilde{v}_{01}}{\partial {\widetilde{y}}} \end{aligned}$$
(34)

here,the stress components i.e. \({\widetilde{\tau }}_{xy,{22}}\) and \({\widetilde{\tau }}_{yy,{22}}\) are depend on the \(O(\mathrm{{De}}\beta ^2)\) velocity component along with the leading order, \(O(\mathrm{{De}})\), \(O(\beta )\), \(O(\mathrm{{De}}\beta )\), \(O(\beta ^2)\), and \(O(\mathrm{{De}}\beta ^2)\) stress and velocity components.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahapatra, B., Bandopadhyay, A. Alterations in electroosmotic slip velocity: combined effect of viscoelasticity and surface potential undulation. Eur. Phys. J. Spec. Top. 232, 935–948 (2023). https://doi.org/10.1140/epjs/s11734-022-00756-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00756-7

Navigation