Skip to main content
Log in

Attosecond probing of photoionization dynamics from diatomic to many-atom molecules

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The natural diversity of molecules in terms of geometries, chemical properties, work functions, among others, offers an impressive laboratory for observing fundamental electron dynamics down to the attosecond timescale. Here, we use some recent angularly resolved Wigner time delay measurements performed in our attoscience laboratory in Lyon to illustrate the electron dynamics in molecules containing a few (N\(_2\), C\(_2\)H\(_2\), and C\(_2\)H\(_4\)) to many atoms (C\(_{10}\)H\(_8\) and C\(_{10}\)H\(_{16}\)). In the few-atom case, the Wigner delay can be measured for a particular electronic state. This allows us to identify the underlying physical mechanisms governing photoionization processes, such as the well-known shape resonance in valence-ionized nitrogen molecule. Promising new experimental results using angle-resolved photoelectron spectroscopy on ethylene show a tendency in the ionization time delay between the X and A states. As a perspective, we show that for many-atom molecules (C\(_{60}\) and C\(_{10}\)H\(_x\), with \(x=8\) or 16), the photoionization metrology can address different kinds of electron dynamics with a collective behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availibility statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. P. Agostini, L.F. DiMauro, “The physics of attosecond light pulses’’. Rep. Progress Phys. 67, 813–855 (2004). https://doi.org/10.1088/0034-4885/67/6/r01

    Article  ADS  Google Scholar 

  2. F. Krausz, M. Ivanov, Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009). https://doi.org/10.1103/RevModPhys.81.163

    Article  ADS  Google Scholar 

  3. F. Lépine, M.Y. Ivanov, M.J.J. Vrakking, Attosecond molecular dynamics: fact or fiction? Nat. Photonics 8, 195 (2014). https://doi.org/10.1038/nphoton.2014.25

    Article  ADS  Google Scholar 

  4. M. Schultze et al., Delay in photoemission. Science 328(5986), 1658–1662 (2010). https://doi.org/10.1126/science.1189401

    Article  ADS  Google Scholar 

  5. M. Isinger et al., Photoionization in the time and frequency domain. Science 358(6365), 893–896 (2017). https://doi.org/10.1126/science.aao7043

    Article  ADS  Google Scholar 

  6. M. Kotur et al., Spectral phase measurement of a fano resonance using tunable attosecond pulses. Nat Commun. 7, 10566 (2016). https://doi.org/10.1038/ncomms10566

    Article  ADS  Google Scholar 

  7. V. Gruson et al., Attosecond dynamics through a fano resonance: Monitoring the birth of a photoelectron. Science 354(6313), 734–738 (2016). https://doi.org/10.1126/science.aah5188

    Article  ADS  Google Scholar 

  8. S. Zhong et al., Attosecond electron-spin dynamics in \(\rm X\)e 4d photoionization. Nat Commun. 11, 5042 (2020). https://doi.org/10.1038/s41467-020-18847-1

    Article  ADS  Google Scholar 

  9. L. Cattaneo, J. Vos, R.Y. Bello, A. Palacios, S. Heuser, L. Pedrelli, M. Lucchini, C. Cirelli, F. Martín, U. Keller, Attosecond coupled electron and nuclear dynamics in dissociative ionization of \(\rm H _2\). Nat. Phys. 14, 733–738 (2018). https://doi.org/10.1038/s41567-018-0103-2

    Article  Google Scholar 

  10. V. Loriot, A. Marciniak, S. Nandi, G. Karras, M. Hervé, E. Constant, E. Plésiat, A. Palacios, F. Martín, F. Lépine, High harmonic generation-2\(\omega\) attosecond stereo-photoionization interferometry in \(\rm N _2\). J. Phys. Photonics 2, 024003 (2020). https://doi.org/10.1088/2515-7647/ab7b10

    Article  ADS  Google Scholar 

  11. S. Nandi et al., Attosecond timing of electron emission from a molecular shape resonance. Sci. Adv. 6(31), eaba7762 (2020). https://doi.org/10.1126/sciadv.aba7762

    Article  ADS  Google Scholar 

  12. J. Vos, L. Cattaneo, S. Patchkovskii, T. Zimmermann, C. Cirelli, M. Lucchini, A. Kheifets, A.S. Landsman, U. Keller, Orientation-dependent stereo wigner time delay and electron localization in a small molecule. Science 360(6395), 1326–1330 (2018). https://doi.org/10.1126/science.aao4731

    Article  ADS  Google Scholar 

  13. X. Gong, W. Jiang, J. Tong, J. Qiang, P. Lu, H. Ni, R. Lucchese, K. Ueda, J. Wu, Asymmetric attosecond photoionization in molecular shape resonance. Phys. Rev. X 12, 011002 (2022). https://doi.org/10.1103/PhysRevX.12.011002

    Article  Google Scholar 

  14. F. Holzmeier, J. Joseph, J.C. Houver, M. Lebech, D. Dowek, R.R. Lucchese, Influence of shape resonances on the angular dependence of molecular photoionization delays. Nat. Commun. 12, 7343 (2021). https://doi.org/10.1038/s41467-021-27360-y

    Article  ADS  Google Scholar 

  15. M. Huppert, I. Jordan, D. Baykusheva, A. von Conta, H.J. Wörner, Attosecond delays in molecular photoionization. Phys. Rev. Lett. 117, 093001 (2016). https://doi.org/10.1103/PhysRevLett.117.093001

    Article  ADS  Google Scholar 

  16. I. Jordan, M. Huppert, D. Rattenbacher, M. Peper, D. Jelovina, C. Perry, A. von Conta, A. Schild, H.J. Wörner, Attosecond spectroscopy of liquid water. Science 369(6506), 974–979 (2020). https://doi.org/10.1126/science.abb0979

    Article  ADS  Google Scholar 

  17. A. Kamalov, A.L. Wang, P.H. Bucksbaum, D.J. Haxton, J.P. Cryan, Electron correlation effects in attosecond photoionization of \(\rm CO _{2}\). Phys. Rev. A 102, 023118 (2020). https://doi.org/10.1103/PhysRevA.102.023118

    Article  ADS  Google Scholar 

  18. H. Ahmadi et al., Attosecond photoionisation time delays reveal the anisotropy of the molecular potential in the recoil frame. Nat. Commun. 13, 1242 (2022). https://doi.org/10.1038/s41467-022-28783-x

    Article  ADS  Google Scholar 

  19. S. Biswas et al., Probing molecular environment through photoemission delays. Nat. Phys. 16, 778–783 (2020). https://doi.org/10.1038/s41567-020-0887-8

  20. S. Heck, D. Baykusheva, M. Han, J.-B. Ji, C. Perry, X. Gong, H.J. Wörner, Attosecond interferometry of shape resonances in the recoil frame of \(\rm CF _4\). Sci. Adv. 7(49), eabj8121 (2021). https://doi.org/10.1126/sciadv.abj8121

    Article  ADS  Google Scholar 

  21. X. Gong, S. Heck, D. Jelovina, C. Perry, K. Zinchenko, R. Lucchese, H. J. Wörner, Attosecond spectroscopy of size-resolved water clusters. Nature 609, 507–511 (2022). https://doi.org/10.1038/s41586-022-05039-8

  22. P.M. Paul, E.S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H.G. Muller, P. Agostini, Observation of a train of attosecond pulses from high harmonic generation. Science 292(5522), 1689–1692 (2001). https://doi.org/10.1126/science.1059413

    Article  ADS  Google Scholar 

  23. J.M. Dahlström, D. Guénot, K. Klünder, M. Gisselbrecht, J. Mauritsson, A. L’Huillier, A. Maquet, R. Taïeb, Theory of attosecond delays in laser-assisted photoionization. Chem. Phys. 414, 53–64 (2013). https://doi.org/10.1016/j.chemphys.2012.01.017

    Article  Google Scholar 

  24. K. Klünder et al., Probing single-photon ionization on the attosecond time scale. Phys. Rev. Lett. 106, 143002 (2011). https://doi.org/10.1103/PhysRevLett.106.143002

    Article  ADS  Google Scholar 

  25. V. Loriot et al., Angularly resolved RABBITT using a second harmonic pulse. J. Opt. 19, 114003 (2017). https://doi.org/10.1088/2040-8986/aa8e10

    Article  ADS  Google Scholar 

  26. E.P. Wigner, Lower limit for the energy derivative of the scattering phase shift. Phys. Rev. 98, 145–147 (1955). https://doi.org/10.1103/PhysRev.98.145

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. R. Pazourek, S. Nagele, J. Burgdörfer, Attosecond chronoscopy of photoemission. Rev. Mod. Phys. 87, 765–802 (2015). https://doi.org/10.1103/RevModPhys.87.765

    Article  ADS  MathSciNet  Google Scholar 

  28. K. Kimura, S. Katsumata, Y. Achiba, T. Yamazaki, S. Iwata, Handbook of HeI Photoelectron Spectra of Fundamental Organic Molecules (Japan Scientific Societies Press, Tokyo, 1981). ISBN-10:0470272007, ISBN-13:978-0470272008

    Google Scholar 

  29. U. Becker, D.A. Shirley (eds.), VUV and Soft X-Ray Photoionization (Plenum Press, New York, 1996). https://doi.org/10.1007/978-1-4613-0315-2

    Book  Google Scholar 

  30. M. Piancastelli, The neverending story of shape resonances. J. Electron Spectrosc. Related Phenomena 100(1), 167–190 (1999). https://doi.org/10.1016/S0368-2048(99)00046-8

    Article  Google Scholar 

  31. R.R. Lucchese, R.W. Zurales, Comparison of the random-phase approximation with the multichannel frozen-core hartree-fock approximation for the photoionization of \(\rm N _{2}\). Phys. Rev. A 44, 291–303 (1991). https://doi.org/10.1103/PhysRevA.44.291

    Article  ADS  Google Scholar 

  32. P. Hockett, E. Frumker, D.M. Villeneuve, P.B. Corkum, Time delay in molecular photoionization. J. Phys. B 49, 095602 (2016). https://doi.org/10.1088/0953-4075/49/9/095602

    Article  ADS  Google Scholar 

  33. V. Loriot, A. Marciniak, S. Nandi, G. Karras, M. Hervé, E. Constant, E. Plésiat, A. Palacios, F. Martín, F. Lépine, Attosecond interferometry using a \(\rm HHG\)-2\(\omega _0\) scheme. Studia UBB Physica 65, 35–47 (2020). https://doi.org/10.24193/subbphys.2020.05

    Article  Google Scholar 

  34. G. Laurent, W. Cao, H. Li, Z. Wang, I. Ben-Itzhak, C.L. Cocke, Attosecond control of orbital parity mix interferences and the relative phase of even and odd harmonics in an attosecond pulse train. Phys. Rev. Lett. 109, 083001 (2012). https://doi.org/10.1103/PhysRevLett.109.083001

    Article  ADS  Google Scholar 

  35. J. Benda, Z. Mašín, J.D. Gorfinkiel, Analysis of RABITT time delays using the stationary multiphoton molecular \(\rm R\)-matrix approach. Phys. Rev. A 105, 053101 (2022). https://doi.org/10.1103/PhysRevA.105.053101

    Article  ADS  Google Scholar 

  36. A.T.J.B. Eppink, D.H. Parker, Velocity map imaging of ions and electrons using electrostatic lenses: Application in photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum. 68(9), 3477–3484 (1997). https://doi.org/10.1063/1.1148310

    Article  ADS  Google Scholar 

  37. H.M. Nussenzveig, Time delay in quantum scattering. Phys. Rev. D 6, 1534–1542 (1972). https://doi.org/10.1103/PhysRevD.6.1534

    Article  ADS  Google Scholar 

  38. G. Bieri, L. Åsbrink, 30.4-nm \({\rm H}\)e(\({\rm II}\)) photoelectron spectra of organic molecules: Part \({\rm I}\). hydrocarbons. J. Electron Spectrosc. Related Phenomena 20(1), 149–167 (1980). https://doi.org/10.1016/0368-2048(80)85013-4

    Article  Google Scholar 

  39. J.G. Brennan, G. Cooper, J.C. Green, M.P. Payne, C.M. Redfern, Relative partial photoionization cross-sections and photoelectron branching ratios of ethylene. J. Electron Spectrosc. Related Phenomena 43(3), 297–305 (1987). https://doi.org/10.1016/0368-2048(87)80008-7

    Article  Google Scholar 

  40. D. Holland, M. MacDonald, M. Hayes, L. Karlsson, B. Wannberg, A photoelectron spectroscopy study of the valence shell photoionization dynamics of acetylene. J. Electron Spectrosc. Related Phenomena 97(3), 253–263 (1998). https://doi.org/10.1016/S0368-2048(98)00310-7

    Article  Google Scholar 

  41. D. Toffoli, P. Decleva, A multichannel least-squares B-spline approach to molecular photoionization: Theory, implementation, and applications within the configuration-interaction singles approximation. J. Chem. Theory Comput. 12(10), 4996–5008 (2016). https://doi.org/10.1021/acs.jctc.6b00627

    Article  Google Scholar 

  42. I. Jordan, H.J. Wörner, Extracting attosecond delays from spectrally overlapping interferograms. J. Opt. 20, 024013 (2018). https://doi.org/10.1088/2040-8986/aaa078

    Article  ADS  Google Scholar 

  43. M. Lucchini, G.D. Lucarelli, M. Murari, A. Trabattoni, N. Fabris, F. Frassetto, S.D. Silvestri, L. Poletto, M. Nisoli, Few-femtosecond extreme-ultraviolet pulses fully reconstructed by a ptychographic technique. Opt. Express 26, 6771–6784 (2018). https://doi.org/10.1364/OE.26.006771

    Article  ADS  Google Scholar 

  44. G. Fronzoni, M. Stener, P. Decleva, Valence and core photoionization dynamics of acetylene by TD-DFT continuum approach. Chem. Phys. 298(1), 141–153 (2004). https://doi.org/10.1016/j.chemphys.2003.11.012

  45. F. Lépine, Multiscale dynamics of C\(_{60}\) from attosecond to statistical physics. J. Phys. B 48, 122002 (2015). https://doi.org/10.1088/0953-4075/48/12/122002

    Article  ADS  Google Scholar 

  46. S. Biswas et al., Attosecond correlated electron dynamics at \(\rm C_{60}\) giant plasmon resonance (2022). arXiv:2111.14464v1

  47. V. Loriot, A. Boyer, S. Nandi, E. Plésiat, A. Marciniak, M. Lara-Astiaso, A. Palacios, P. Decleva, F. Martín, F. Lépine, Attosecond metrology of 2\(\rm D\) charge distribution in molecules (2022). arXiv:2209.02445

  48. T. Barillot et al., Angular asymmetry and attosecond time delay from the giant plasmon resonance in \(\rm C _{60}\) photoionization. Phys. Rev. A 91, 033413 (2015). https://doi.org/10.1103/PhysRevA.91.033413

    Article  ADS  Google Scholar 

  49. S.W.J. Scully et al., Photoexcitation of a volume plasmon in \(\rm C _{60}\) ions. Phys. Rev. Lett. 94, 065503 (2005). https://doi.org/10.1103/PhysRevLett.94.065503

    Article  ADS  Google Scholar 

  50. V. Loriot et al., Resolving \(\rm XUV\) induced femtosecond and attosecond dynamics in polyatomic molecules with a compact attosecond beamline. J. Phys. Conf. Ser. 635(1), 012006 (2015). https://doi.org/10.1088/1742-6596/635/1/012006

    Article  Google Scholar 

  51. L. Seiffert et al., Attosecond chronoscopy of electron scattering in dielectric nanoparticles. Nat. Phys. 13, 766–770 (2017). https://doi.org/10.1038/nphys4129

  52. M. Lucchini et al., Light-matter interaction at surfaces in the spatiotemporal limit of macroscopic models. Phys. Rev. Lett. 115, 137401 (2015). https://doi.org/10.1103/PhysRevLett.115.137401

    Article  ADS  Google Scholar 

  53. M. Hervé et al., Ultrafast dynamics of correlation bands following \(\rm XUV\) molecular photoionization. Nat. Phys. 17, 327–331 (2021). https://doi.org/10.1038/s41567-020-01073-3

Download references

Acknowledgements

We thank F. Lépine and E. Constant for fruitful discussions. We acknowledge the support of CNRS, ANR-16-CE30-0012 “Circé”, ANR-15-CE30-0001 “CIMBAAD”, the Fédération de recherche André Marie Ampère and the European COST Action AttoChem (CA18222) and the GDR-UP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Loriot.

Additional information

Ultrafast Phenomena from attosecond to picosecond timescales: theory and experiments. Guest editors: Franck Lépine, Lionel Poisson.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyer, A., Nandi, S. & Loriot, V. Attosecond probing of photoionization dynamics from diatomic to many-atom molecules. Eur. Phys. J. Spec. Top. 232, 2001–2009 (2023). https://doi.org/10.1140/epjs/s11734-022-00754-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00754-9

Keywords

Navigation