Skip to main content
Log in

Strong field non-Franck–Condon ionization of H\(_2\): a semi-classical analysis

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

A Correction to this article was published on 08 March 2023

This article has been updated

Abstract

Single ionization of H\(_2\) molecules exposed to strong and short laser pulses is investigated by a semi-classical method. Three laser characteristics are considered: (i) The carrier-wave frequency corresponds to wavelengths covering and bridging the two ionization regimes: From tunnel ionization (TI) at 800 nm to multiphoton ionization (MPI) at 266 nm. (ii) Values of the peak intensity are chosen within a window to eliminate competing double ionization processes. (iii) Particular attention is paid to the polarization of the laser field, which can be linearly or circularly polarized. The results and their interpretation concern two observables, namely the end-of-pulse total ionization probability and vibrational distribution generated in the cation H\(_2^+\). The most prominent findings are an increased ionization efficiency in linear polarization and a vibrational distribution of the cation that favors lower-lying levels than those that would be populated in a vertical (Franck–Condon) ionization, leading to non-Franck–Condon distributions, both in linear and circular polarizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

The Fortran codes developed by us and used in this work are available on request from the authors.

Change history

References

  1. P.B. Corkum, F. Krausz, Attosecond science. Nat. Phys. 3(6), 381–387 (2007). https://doi.org/10.1038/nphys620

    Article  Google Scholar 

  2. P. Lu, J. Wang, H. Li, K. Lin, X. Gong, Q. Song, Q. Ji, W. Zhang, J. Ma, H. Li, H. Zeng, F. He, J. Wu, High-order above-threshold dissociation of molecules. Proc. Natl. Acad. Sci. USA 115(9), 2049–2053 (2018). https://doi.org/10.1073/pnas.1719481115

    Article  ADS  Google Scholar 

  3. P.B. Corkum, Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71(13), 1994 (1993). https://doi.org/10.1103/PhysRevLett.71.1994

    Article  ADS  Google Scholar 

  4. M. Lewenstein, P. Balcou, M.Y. Ivanov, A. L’Huillier, P.B. Corkum, Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49(3), 2117–2132 (1994). https://doi.org/10.1103/PhysRevA.49.2117

    Article  ADS  Google Scholar 

  5. T. Okino, Y. Furukawa, Y. Nabekawa, S. Miyabe, A.A. Eilanlou, E.J. Takahashi, K. Yamanouchi, K. Midorikawa, Direct observation of an attosecond electron wave packet in a nitrogen molecule. Sci. Adv. 1(8), 1500356 (2015). https://doi.org/10.1126/sciadv.1500356

    Article  ADS  Google Scholar 

  6. S. Sukiasyan, S. Patchkovskii, O. Smirnova, T. Brabec, M.Y. Ivanov, Exchange and polarization effect in high-order harmonic imaging of molecular structures. Phys. Rev. A 82, 043414 (2010). https://doi.org/10.1103/PhysRevA.82.043414

    Article  ADS  Google Scholar 

  7. T. Zuo, A.D. Bandrauk, P.B. Corkum, Laser-induced electron diffraction: a new tool for probing ultrafast molecular dynamics. Chem. Phys. Lett. 259(3), 313–320 (1996). https://doi.org/10.1016/0009-2614(96)00786-5

    Article  ADS  Google Scholar 

  8. C.I. Blaga, J. Xu, A.D. DiChiara, E. Sistrunk, K. Zhang, P. Agostini, T.A. Miller, L.F. DiMauro, C.D. Lin, Imaging ultrafast molecular dynamics with laser-induced electron diffraction. Nature 483(7388), 194–197 (2012). https://doi.org/10.1038/nature10820

    Article  ADS  Google Scholar 

  9. M. Peters, T.T. Nguyen-Dang, C. Cornaggia, S. Saugout, E. Charron, A. Keller, O. Atabek, Ultrafast molecular imaging by laser-induced electron diffraction. Phys. Rev. A 83(5), 051403 (2011). https://doi.org/10.1103/PhysRevA.83.051403

    Article  ADS  Google Scholar 

  10. T.T. Nguyen-Dang, M. Peters, J. Viau-Trudel, E. Couture-Bienvenue, R. Puthumpally-Joseph, E. Charron, O. Atabek, Laser-induced electron diffraction: alignment defects and symmetry breaking. Mol. Phys. 115(15–16), 1934–1943 (2017). https://doi.org/10.1080/00268976.2017.1317858

    Article  ADS  Google Scholar 

  11. S. Patchkovskii, M.S. Schuurman, Full-dimensional treatment of short-time vibronic dynamics in a molecular high-order-harmonic-generation process in methane. Phys. Rev. A 96, 053405 (2017). https://doi.org/10.1103/PhysRevA.96.053405

    Article  ADS  Google Scholar 

  12. A.I. Pegarkov, E. Charron, A. Suzor-Weiner, Nonlinear single and double ionization of molecules by strong laser pulses. J. Phys. B 32(14), 363–369 (1999). https://doi.org/10.1088/0953-4075/32/14/104

    Article  ADS  Google Scholar 

  13. A.D. Bandrauk, Harmonic generation in a 1D model of H\(_2\) with single and double ionization. J. Phys. B 38(14), 2529–2544 (2005). https://doi.org/10.1088/0953-4075/38/14/016

    Article  ADS  Google Scholar 

  14. S. Saugout, C. Cornaggia, A. Suzor-Weiner, E. Charron, Ultrafast electronuclear dynamics of \({\rm H }_{2}\) double ionization. Phys. Rev. Lett. 98, 253003 (2007). https://doi.org/10.1103/PhysRevLett.98.253003

    Article  ADS  Google Scholar 

  15. S. Saugout, E. Charron, C. Cornaggia, \({\text{ H }}_{2}\) double ionization with few-cycle laser pulses. Phys. Rev. A 77, 023404 (2008). https://doi.org/10.1103/PhysRevA.77.023404

    Article  ADS  Google Scholar 

  16. M.V. Ammosov, N.B. Delone, V.P. Krainov, Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov. Phys. JETP 64(6), 1191 (1986)

    ADS  Google Scholar 

  17. I.I. Fabrikant, G.A. Gallup, Semiclassical propagation method for tunneling ionization. Phys. Rev. A 79, 013406 (2009). https://doi.org/10.1103/PhysRevA.79.013406

    Article  ADS  Google Scholar 

  18. A.M. Perelomov, V.S. Popov, M.V. Terent’ev, Ionization of atoms in an alternating electric field. J. Exptl. Theoret. Phys. (U.S.S.R.) 50, 1393–1409 (1966)

    Google Scholar 

  19. A.M. Perelomov, V.S. Popov, M.V. Terent’ev, Ionization of atoms in an alternating electric field II. J. Exptl. Theoret. Phys. (U.S.S.R.) 51, 309–326 (1966)

    Google Scholar 

  20. A.M. Perelomov, V.S. Popov, Ionization of atoms in an alternating electric field III. J. Exptl. Theoret. Phys. (U.S.S.R.) 52, 514–526 (1967)

    Google Scholar 

  21. X.M. Tong, Z.X. Zhao, C.D. Lin, Theory of molecular tunneling ionization. Phys. Rev. A 66, 033402 (2002). https://doi.org/10.1103/PhysRevA.66.033402

    Article  ADS  Google Scholar 

  22. E.P. Benis, J.F. Xia, X.M. Tong, M. Faheem, M. Zamkov, B. Shan, P. Richard, Z. Chang, Ionization suppression of \({\rm Cl }_{2}\) molecules in intense laser fields. Phys. Rev. A 70, 025401 (2004). https://doi.org/10.1103/PhysRevA.70.025401

    Article  ADS  Google Scholar 

  23. B. Numerov, Note on the numerical integration of d\(^2\)x/dt\(^2\) = f(x, t). Astron. Nachr. 230(19), 359–364 (1927). https://doi.org/10.1002/asna.19272301903

    Article  ADS  MATH  Google Scholar 

  24. W. Kolos, L. Wolniewicz, Potential-energy curves for the \(\chi ^1\Sigma _g^+\), \(b^3\Sigma _u^+\), and \(C^1\Pi _u\) states of the hydrogen molecule. J. Chem. Phys. 43, 2429 (1965). https://doi.org/10.1063/1.1697142

    Article  ADS  Google Scholar 

  25. J.M. Peek, Eigenparameters for the \(1s _g\) and \(2p _u\) Orbitals of \(H_2^+\). J. Chem. Phys. 43, 3004 (1965). https://doi.org/10.1063/1.1697265

    Article  ADS  Google Scholar 

  26. M.M. Madsen, J.M. Peek, Eigenparameters for the lowest twenty electronic states of the hydrogen molecule ion. At Data Nucl. Data Tables 2, 3–204 (1970). https://doi.org/10.1016/S0092-640X(70)80008-0

    Article  Google Scholar 

  27. M. Awasthi, Y. Vanne, A. Saenz, A. Castro, P. Decleva, Single-active-electron approximation for describing molecules in ultrashort laser pulses and its application to molecular hydrogen. Phys. Rev. A 77(6), 063403 (2008). https://doi.org/10.1103/PhysRevA.77.063403

    Article  ADS  Google Scholar 

  28. S.-F. Zhao, C. Jin, A.-T. Le, T.F. Jiang, C.D. Lin, Determination of structure parameters in strong-field tunneling ionization theory of molecules. Phys. Rev. A 81, 033423 (2010). https://doi.org/10.1103/PhysRevA.81.033423

    Article  ADS  Google Scholar 

  29. S.V. Popruzhenko, V.D. Mur, V.S. Popov, D. Bauer, Strong field ionization rate for arbitrary laser frequencies. Phys. Rev. Lett. 101, 193003 (2008). https://doi.org/10.1103/PhysRevLett.101.193003

    Article  ADS  Google Scholar 

  30. L.V. Keldysh, Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20(5), 1307 (1965)

    Google Scholar 

  31. S.V. Popruzhenko, Keldysh theory of strong field ionization: history, applications, difficulties and perspectives. J. Phys. B 47(20), 204001 (2014). https://doi.org/10.1088/0953-4075/47/20/204001

    Article  ADS  Google Scholar 

  32. H. Padé, Sur la représentation approchée d’une fonction par des fractions rationnelles. Ann. Sci. ENS 9, 3–93 (1892). https://doi.org/10.24033/asens.378

    Article  MATH  Google Scholar 

  33. B. Walker, B. Sheehy, L.F. DiMauro, P. Agostini, K.J. Schafer, K.C. Kulander, Precision measurement of strong field double ionization of helium. Phys. Rev. Lett. 73, 1227–1230 (1994). https://doi.org/10.1103/PhysRevLett.73.1227

    Article  ADS  Google Scholar 

  34. F. Mauger, A. Kamor, C. Chandre, T. Uzer, Mechanism of delayed double ionization in a strong laser field. Phys. Rev. Lett. 108, 063001 (2012). https://doi.org/10.1103/PhysRevLett.108.063001

    Article  ADS  Google Scholar 

  35. Y.V. Vanne, A. Saenz, Numerical treatment of diatomic two-electron molecules using a B-spline based CI method. J. Phys. B 37(20), 4101 (2004). https://doi.org/10.1088/0953-4075/37/20/005

    Article  Google Scholar 

  36. M. Awasthi, Y.V. Vanne, A. Saenz, Non-perturbative solution of the time-dependent Schrödinger equation describing H\(_2\) in intense short laser pulses. J. Phys. B 38(22), 3973 (2005). https://doi.org/10.1088/0953-4075/38/22/005

    Article  ADS  Google Scholar 

  37. S.-F. Zhao, A.-T. Le, C. Jin, X. Wang, C.D. Lin, Analytical model for calibrating laser intensity in strong-field-ionization experiments. Phys. Rev. A 93, 023413 (2016). https://doi.org/10.1103/PhysRevA.93.023413

    Article  ADS  Google Scholar 

  38. A. Saenz, On the influence of vibrational motion on strong-field ionization rates in molecules. J. Phys. B 33(20), 4365–4372 (2000). https://doi.org/10.1088/0953-4075/33/20/313

    Article  ADS  Google Scholar 

  39. J.H. Posthumus, L.J. Frasinski, K. Codling, Tunnelling ionization and the Franck-Condon principle, in Super-Intense Laser-Atom Physics, ed. by B. Piraux, K. Rzazewski (Springer, Dordrecht, 2001), p. 171

    Chapter  Google Scholar 

  40. X. Urbain, B. Fabre, E.M. Staicu-Casagrande, N. de Ruette, V.M. Andrianarijaona, J. Jureta, J.H. Posthumus, A. Saenz, E. Baldit, C. Cornaggia, Intense-laser-field ionization of molecular hydrogen in the tunneling regime and its effect on the vibrational excitation of \({\rm H }_{2}^{+}\). Phys. Rev. Lett. 92, 163004 (2004). https://doi.org/10.1103/PhysRevLett.92.163004

    Article  ADS  Google Scholar 

  41. F. Châteauneuf, T.-T. Nguyen-Dang, N. Ouellet, O. Atabek, Dynamical quenching of field-induced dissociation of H\(_2^+\) in intense infrared lasers. J. Chem. Phys. 108(10), 3974–3986 (1998). https://doi.org/10.1063/1.475800

    Article  ADS  Google Scholar 

  42. H. Abou-Rachid, T.-T. Nguyen-Dang, O. Atabek, Dynamical quenching of laser-induced dissociations of diatomic molecules in intense infrared fields: effects of molecular rotations and misalignments. J. Chem. Phys. 114(5), 2197–2207 (2001). https://doi.org/10.1063/1.1328378

    Article  ADS  Google Scholar 

  43. A. Giusti-Suzor, F.H. Mies, Vibrational trapping and suppression of dissociation in intense laser fields. Phys. Rev. Lett. 68, 3869–3872 (1992). https://doi.org/10.1103/PhysRevLett.68.3869

    Article  ADS  Google Scholar 

  44. S.-L. Hu, Z.-X. Zhao, T.-Y. Shi, Alignment-dependent ionization of CO\(_2\) in the intense laser fields: single-active-electron approach. Chin. Phys. Lett. 30(10), 103103 (2013). https://doi.org/10.1088/0256-307x/30/10/103103

    Article  ADS  Google Scholar 

  45. Murray, R.: Tunnel ionization in strong-field in atoms and molecules and its applications. PhD thesis, University of Waterloo, Waterloo, Ontario, Canada (2011)

  46. R. Murray, W.-K. Liu, M.Y. Ivanov, Partial Fourier-transform approach to tunnel ionization: atomic systems. Phys. Rev. A 81, 023413 (2010). https://doi.org/10.1103/PhysRevA.81.023413

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been performed within the French GDR UP number 3754 of CNRS. Jean-Nicolas Vigneau is grateful to the French MESRI (French Ministry of Higher Education, Research and Innovation) for funding his PhD grant through a scholarship from EDOM (Ecole Doctorale Ondes et Matière, Université Paris-Saclay, France). JNV also acknowledges partial funding from the Choquette Family Foundation—Mobility Scholarship and the Paul-Antoine-Giguère Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The numerical simulations were performed by J-NV. The first draft of the manuscript was written by OA and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jean-Nicolas Vigneau, Thanh-Tung Nguyen-Dang or Eric Charron.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

The original online version of this article was revised: To be in accordance with shown results, the laser intensity values given in the original article had to be multiplied by 4 for all calculations performed in circular polarization, which affected some of the aforementioned intensity values, but also the abscissa of figures 3, 5, S2 and S3, that now represents I as I/4 for the circular polarization case, as well as a change in the histograms of figure 7 displaying the final population distribution in the H +2 eigenstates from a circular polarization dynamic.

O. Atabek: Deceased June 27th, 2022.

Supplementary Information

Below is the link to the electronic supplementary material.

11734_2022_750_MOESM1_ESM.pdf

Results of calculations with varying pulse durations, as mentioned and discussed in Section 3.1, are shown in a separate Supplementary Information file (pdf 1220 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vigneau, JN., Atabek, O., Nguyen-Dang, TT. et al. Strong field non-Franck–Condon ionization of H\(_2\): a semi-classical analysis. Eur. Phys. J. Spec. Top. 232, 2081–2093 (2023). https://doi.org/10.1140/epjs/s11734-022-00750-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00750-z

Navigation