Skip to main content

Advertisement

Log in

Analysing the motion of scallop-like swimmers in a noisy environment

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

A scallop-like swimmer going back-and-forth (reciprocal motion) does not produce any net motility. We discuss a similar artificial microswimmer that is powered by magnetic fields. In the presence of thermal noise, the helical swimmer exhibits enhanced diffusivity during reciprocal actuation. The external magnetic drive can be further modified to break the reciprocity. Equipped with only the information on swimmer trajectories and orientations, we discuss quantitative methods to estimate the degree of reciprocity and non-reciprocity in such scenarios. The paper proposes a quantitative measure and validates the same with numerical simulations, further supported by experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

No data associated in the manuscript.

References

  1. E.M. Purcell, Life at low reynolds number. Am. J. Phys. 45(1), 3–11 (1977)

    Article  ADS  Google Scholar 

  2. L. Turner, W.S. Ryu, H.C. Berg, Real-time imaging of fluorescent flagellar filaments. J. Bacteriol. 182(10), 2793–2801 (2000)

    Article  Google Scholar 

  3. C.J. Brokaw, Microtubule sliding in swimming sperm flagella: direct and indirect measurements on sea urchin and tunicate spermatozoa. J. Cell Biol. 114(6), 1201–1215 (1991)

    Article  Google Scholar 

  4. G.A. Ozin, I. Manners, S. Fournier-Bidoz, A. Arsenault, Dream nanomachines. Adv. Mater. 17(24), 3011–3018 (2005)

    Article  Google Scholar 

  5. S. Ramaswamy, The mechanics and statistics of active matter. Annu. Rev. Condens. Matter Phys. 1(1), 323–345 (2010)

    Article  ADS  Google Scholar 

  6. M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R.A. Simha, Hydrodynamics of soft active matter. Rev. Mod. Phys. 85(3), 1143 (2013)

    Article  ADS  Google Scholar 

  7. C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, G. Volpe, Active particles in complex and crowded environments. Rev. Modern Phys. 88(4), 045,006 (2016)

  8. B.J. Nelson, I.K. Kaliakatsos, J.J. Abbott, Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010)

    Article  Google Scholar 

  9. T. Qiu, M. Jeong, R. Goyal, V.M. Kadiri, J. Sachs, P. Fischer, in Field-Driven Micro and Nanorobots for Biology and Medicine (Springer, 2022), pp. 389–411

  10. R. Vasantha Ramachandran, R. Bhat, D. Kumar Saini, A. Ghosh, Theragnostic nanomotors: Successes and upcoming challenges. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 13(6), e1736 (2021)

  11. J. Li, B.E.F. de Ávila, W. Gao, L. Zhang, J. Wang, Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Sci. Robot.2(4), eaam6431 (2017)

  12. D. Dasgupta, D. Pally, D.K. Saini, R. Bhat, A. Ghosh, Nanomotors sense local physicochemical heterogeneities in tumor microenvironments. Angew. Chem. Int. Ed. 59(52), 23690–23696 (2020)

    Article  Google Scholar 

  13. M. Pal, N. Somalwar, A. Singh, R. Bhat, S.M. Eswarappa, D.K. Saini, A. Ghosh, Maneuverability of magnetic nanomotors inside living cells. Adv. Mater. 30(22), 1800,429 (2018)

  14. P.L. Venugopalan, R. Sai, Y. Chandorkar, B. Basu, S. Shivashankar, A. Ghosh, Conformal cytocompatible ferrite coatings facilitate the realization of a nanovoyager in human blood. Nano Lett. 14(4), 1968–1975 (2014)

    Article  ADS  Google Scholar 

  15. D. Dasgupta, S.S. Peddi MDS, D.K. Saini, A. Ghosh, Mobile nanobots for prevention of root canal treatment failure. Adv. Healthcare Mater. p. 2200232 (2022)

  16. S. Ghosh, A. Ghosh, Mobile nanotweezers for active colloidal manipulation. Sci. Robot. 3(14) (2018)

  17. A. Ghosh, D. Dasgupta, M. Pal, K.I. Morozov, A.M. Leshansky, A. Ghosh, Helical nanomachines as mobile viscometers. Adv. Funct. Mater. 28(25), 1705,687 (2018)

  18. W.F. Paxton, K.C. Kistler, C.C. Olmeda, A. Sen, S.K. St. Angelo, Y. Cao, T.E. Mallouk, P.E. Lammert, V.H. Crespi, Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126(41), 13,424–13,431 (2004)

  19. K.K. Dey, X. Zhao, B.M. Tansi, W.J. Méndez-Ortiz, U.M. Córdova-Figueroa, R. Golestanian, A. Sen, Micromotors powered by enzyme catalysis. Nano Lett. 15(12), 8311–8315 (2015)

    Article  ADS  Google Scholar 

  20. S. Gangwal, O.J. Cayre, M.Z. Bazant, O.D. Velev, Induced-charge electrophoresis of metallodielectric particles. Phys. Rev. Lett. 100(5), 058,302 (2008)

  21. H.R. Jiang, N. Yoshinaga, M. Sano, Active motion of a janus particle by self-thermophoresis in a defocused laser beam. Phys. Rev. Lett. 105(26), 268,302 (2010)

  22. A. Ghosh, P. Fischer, Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett. 9(6), 2243–2245 (2009)

    Article  ADS  Google Scholar 

  23. P. Fischer, A. Ghosh, Magnetically actuated propulsion at low reynolds numbers: towards nanoscale control. Nanoscale 3(2), 557–563 (2011)

    Article  ADS  Google Scholar 

  24. R. Dreyfus, J. Baudry, M.L. Roper, M. Fermigier, H.A. Stone, J. Bibette, Microscopic artificial swimmers. Nature 437(7060), 862–865 (2005)

    Article  ADS  MATH  Google Scholar 

  25. B. Jang, E. Gutman, N. Stucki, B.F. Seitz, P.D. Wendel-García, T. Newton, J. Pokki, O. Ergeneman, S. Pané, Y. Or et al., Undulatory locomotion of magnetic multilink nanoswimmers. Nano Lett. 15(7), 4829–4833 (2015)

    Article  ADS  Google Scholar 

  26. P. Mandal, A. Ghosh, Observation of enhanced diffusivity in magnetically powered reciprocal swimmers. Phys. Rev. Lett. 111(24), 248,101 (2013)

  27. E. Lauga, Enhanced diffusion by reciprocal swimming. Phys. Rev. Lett. 106(17), 178,101 (2011)

  28. G. Patil, A. Ghosh, Anomalous behavior of highly active helical swimmers. Front. Phys. 8, 656 (2020)

    Google Scholar 

  29. G. Patil, P. Mandal, A. Ghosh, Using thermal ratchet mechanism to achieve net motility in magnetic microswimmers. arXiv preprint arXiv:2205.05116 (2022)

  30. R.D. Astumian, I. Derényi, Fluctuation driven transport and models of molecular motors and pumps. Eur. Biophys. J. 27(5), 474–489 (1998)

    Article  Google Scholar 

  31. T. Qiu, T.C. Lee, A.G. Mark, K.I. Morozov, R. Münster, O. Mierka, S. Turek, A.M. Leshansky, P. Fischer, Swimming by reciprocal motion at low reynolds number. Nat. Commun. 5(1), 1–8 (2014)

    Article  Google Scholar 

  32. T.D. Montenegro-Johnson, D.J. Smith, D. Loghin, Physics of rheologically enhanced propulsion: different strokes in generalized stokes. Phys. Fluids 25(8), 081,903 (2013)

  33. H.C. Fu, C.W. Wolgemuth, T.R. Powers, Swimming speeds of filaments in nonlinearly viscoelastic fluids. Phys. Fluids 21(3), 033,102 (2009)

  34. M.M. Hawkeye, M.J. Brett, Glancing angle deposition: fabrication, properties, and applications of micro-and nanostructured thin films. J. Vacuum Sci. Technol. A: Vacuum Surf. Films 25(5), 1317–1335 (2007)

    Article  ADS  Google Scholar 

  35. A. Ghosh, D. Paria, H.J. Singh, P.L. Venugopalan, A. Ghosh, Dynamical configurations and bistability of helical nanostructures under external torque. Phys. Rev. E 86(3), 031,401 (2012)

  36. A. Ghosh, P. Mandal, S. Karmakar, A. Ghosh, Analytical theory and stability analysis of an elongated nanoscale object under external torque. Phys. Chem. Chem. Phys. 15(26), 10817–10823 (2013)

    Article  Google Scholar 

  37. R.D. Astumian, Thermodynamics and kinetics of a brownian motor. Science 276(5314), 917–922 (1997)

  38. P. Reimann, Brownian motors: noisy transport far from equilibrium. Phys. Rep. 361(2–4), 57–265 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. P. Mandal, V. Chopra, A. Ghosh, Independent positioning of magnetic nanomotors. ACS Nano 9(5), 4717–4725 (2015)

    Article  Google Scholar 

  40. A. Ghosh, D. Paria, G. Rangarajan, A. Ghosh, Velocity fluctuations in helical propulsion: how small can a propeller be. J. Phys. Chem. Lett. 5(1), 62–68 (2014)

    Article  Google Scholar 

  41. K.I. Morozov, A.M. Leshansky, The chiral magnetic nanomotors. Nanoscale 6(3), 1580–1588 (2014)

    Article  ADS  Google Scholar 

  42. A. Neild, J.T. Padding, L. Yu, B. Bhaduri, W.J. Briels, T.W. Ng, Translational and rotational coupling in brownian rods near a solid surface. Phys. Rev. E 82(4), 041,126 (2010)

  43. Y. Han, A.M. Alsayed, M. Nobili, J. Zhang, T.C. Lubensky, A.G. Yodh, Brownian motion of an ellipsoid. Science 314(5799), 626–630 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge DBT, SERB and MeiTY for funding support, and the usage of the facilities in the Micro and Nano Characterization Facility and National Nano Fabrication Centre (CeNSE) at IISc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ambarish Ghosh.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, G., Ghosh, A. Analysing the motion of scallop-like swimmers in a noisy environment. Eur. Phys. J. Spec. Top. 232, 927–933 (2023). https://doi.org/10.1140/epjs/s11734-022-00728-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00728-x

Navigation