Skip to main content
Log in

Dynamics and chimera state in a neural network with discrete memristor coupling

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Due to characteristics of memristor being highly similar to the principle and structure of synapses in biological brains, memristor neural networks are widely studied. Discrete memristor made it possible to study the discrete memristor neural network. In this paper, the properties of the individual Chialvo neuron are discussed. The synchronization of two neurons through different firing modes coupled with a discrete memristor is studied by changing the coupling gain. A ring neural network is constructed, and two adjacent neurons are connected by a discrete memristor. Synchronization and chimera state in the network are analyzed from the coupling gain and the number of neurons with different firing modes in the network. Simulation results show that discrete memristor plays the role of synapse well and realizes the synchronization of neurons and neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability statement

All data and models during the study appear in the submitted article.

References

  1. L. Chua, Memristor-the missing circuit element. IEEE Trans. Circ. Theory 18(5), 507–519 (1971)

    Google Scholar 

  2. D.B. Strukov, G.S. Snider, D.R. Stewart et al., The missing memristor found. Nature 453(7191), 80–83 (2008)

    ADS  Google Scholar 

  3. I. Vourkas, G.C. Sirakoulis, A novel design and modeling paradigm for memristor-based crossbar circuits. IEEE Trans. Nanotechnol. 11(6), 1151–1159 (2012)

    ADS  Google Scholar 

  4. S. Choi, P. Sheridan, W. Lu, Data clustering using memristor networks. Sci. Rep. 5(1), 1–10 (2015)

    Google Scholar 

  5. A. Ahmadi, K. Rajagopal, V. Pham et al., A new five dimensional multistable chaotic system with hidden attractors, in Recent advances in chaotic systems and synchronization. (Elsevier, Amsterdam, 2019), pp.77–87

    Google Scholar 

  6. B. Ramakrishnan, A. Ahmadi, F. Nazarimehr et al., Oyster oscillator: a novel mega-stable nonlinear chaotic system. Eur. Phys. J. Spec. Top. 2, 1–9 (2021)

    Google Scholar 

  7. Y. Zhang, Z. Liu, H. Wu et al., Two-memristor-based chaotic system and its extreme multistability reconstitution via dimensionality reduction analysis. Chaos Soliton Fract. 127, 354–363 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  8. H. Cao, F. Wang, Transient and steady coexisting attractors in a new memristor-based 4-d chaotic circuit. AEU Int. J. Electron. Commun. 108, 262–274 (2019)

    Google Scholar 

  9. V. Varshney, S. Sabarathinam, A. Prasad et al., Infinite number of hidden attractors in memristor-based autonomous duffing oscillator. Int. J. Bifurc. Chaos 28(01), 1850013 (2018)

    MathSciNet  MATH  Google Scholar 

  10. M. Guo, Z. Gao, Y. Xue et al., Dynamics of a physical sbt memristor-based wien-bridge circuit. Nonlinear Dyn. 93(3), 1681–1693 (2018)

    Google Scholar 

  11. J. Ruan, K. Sun, J. Mou et al., Fractional-order simplest memristor-based chaotic circuit with new derivative. Eur. Phys. J. Plus 133(1), 1–12 (2018)

    Google Scholar 

  12. H. Lin, C. Wang, Q. Hong et al., A multi-stable memristor and its application in a neural network. IEEE Trans. Circ. Syst. II 67(12), 3472–3476 (2020)

    ADS  Google Scholar 

  13. B. Bao, H. Qian, Q. Xu et al., Coexisting behaviors of asymmetric attractors in hyperbolic-type memristor based hopfield neural network. Front. Comput. Neurosci. 11, 81 (2017)

    Google Scholar 

  14. S. He, K. Sun, Y. Peng et al., Modeling of discrete fracmemristor and its application. AIP Adv. 10(1), 015332 (2020)

    ADS  Google Scholar 

  15. Y. Peng, K. Sun, S. He, A discrete memristor model and its application in hénon map. Chaos Soliton Fract. 137, 109873 (2020)

    MATH  Google Scholar 

  16. Y. Peng, S. He, K. Sun, A higher dimensional chaotic map with discrete memristor. AEU Int. J. Electron. Commun. 129, 153539 (2021)

    Google Scholar 

  17. Z. Liang, S. He, H. Wang et al., A novel discrete memristive chaotic map. Eur. Phys. J. Plus 137(3), 1–11 (2022)

    ADS  Google Scholar 

  18. H. Bao, H. Li, Z. Hua et al., Sine-transform-based memristive hyperchaotic model with hardware implementation. IEEE Trans. Industr. Inform. 2, 2 (2022)

    Google Scholar 

  19. H. Bao, Z. Hua, H. Li et al., Memristor-based hyperchaotic maps and application in auxiliary classifier generative adversarial nets. IEEE Trans. Industr. Inform. 18(8), 5297–5306 (2022)

    Google Scholar 

  20. L. Fu, S. He, H. Wang et al., Simulink modeling and dynamics of a discrete memristor chaotic system. Acta Phys. Sin. 71(03), 42–51 (2022)

    Google Scholar 

  21. J. Ma, J. Tang, A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89(3), 1569–1578 (2017)

    MathSciNet  Google Scholar 

  22. C. Xu, C. Wang, Y. Sun et al., Memristor-based neural network circuit with weighted sum simultaneous perturbation training and its applications. Neurocomputing 462, 581–590 (2021)

    Google Scholar 

  23. W. Yao, C. Wang, Y. Sun et al., Synchronization of inertial memristive neural networks with time-varying delays via static or dynamic event-triggered control. Neurocomputing 404, 367–380 (2020)

    Google Scholar 

  24. Y. Xu, Y. Guo, G. Ren et al., Dynamics and stochastic resonance in a thermosensitive neuron. Appl. Math. Comput. 385, 125427 (2020)

    MathSciNet  MATH  Google Scholar 

  25. X. Zhang, C. Wang, J. Ma et al., Control and synchronization in nonlinear circuits by using a thermistor. Mod. Phys. Lett. B 34(25), 2050267 (2020)

    ADS  MathSciNet  Google Scholar 

  26. Y. Liu, W. Xu, J. Ma et al., A new photosensitive neuron model and its dynamics. Front. Inf. Technol. Electron. Eng. 21(9), 1387–1396 (2020)

    Google Scholar 

  27. S. Vaidyanathan, C. Volos. Advances in memristors, memristive devices and systems, Vol. 701 (2017)

  28. C. Stöckl, W. Maass, Optimized spiking neurons can classify images with high accuracy through temporal coding with two spikes. Nat. Mach. Intell. 3(3), 230–238 (2021)

    Google Scholar 

  29. D.R. Chialvo, Generic excitable dynamics on a two-dimensional map. Chaos Soliton Fract. 5(3–4), 461–479 (1995)

    ADS  MATH  Google Scholar 

  30. N.F. Rulkov, Modeling of spiking-bursting neural behavior using two-dimensional map. Phys. Rev. E 65(4), 041922 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  31. E.M. Izhikevich, F. Hoppensteadt, Classification of bursting mappings. Int. J. Bifurcat. Chaos 14(11), 3847–3854 (2004)

    MathSciNet  MATH  Google Scholar 

  32. M. Courbage, V. Nekorkin, L. Vdovin, Chaotic oscillations in a map-based model of neural activity. Chaos 17(4), 043109 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  33. K. Rajagopal, S. Panahi, M. Chen et al., Suppressing spiral wave turbulence in a simple fractional-order discrete neuron map using impulse triggering. Fractals 29(08), 2140030 (2021)

    ADS  MATH  Google Scholar 

  34. H. Sun, H. Cao, Complete synchronization of coupled rulkov neuron networks. Nonlinear Dyn. 84(4), 2423–2434 (2016)

    MathSciNet  Google Scholar 

  35. D. Biswas, S. Gupta, Ageing transitions in a network of rulkov neurons. Sci. Rep. 12(1), 1–10 (2022)

    Google Scholar 

  36. S.P. Adhikari, M. Sah, H. Kim et al., Three fingerprints of memristor. IEEE Trans. Circ. Syst. I 60(11), 3008–3021 (2013)

    Google Scholar 

  37. D.M. Abrams, S.H. Strogatz, Chimera states for coupled oscillators. Phys. Rev. Lett. 93(17), 174102 (2004)

    ADS  Google Scholar 

  38. B. Hu, D. Guo, Q. Wang, Control of absence seizures induced by the pathways connected to srn in corticothalamic system. Cogn. Neurodyn. 9(3), 279–289 (2015)

    Google Scholar 

  39. H. Yu, L. Cai, X. Wu et al., Investigation of phase synchronization of interictal EGG in right temporal lobe epilepsy. Phys. A 492, 931–940 (2018)

    MathSciNet  Google Scholar 

  40. C. Babiloni, K. Blinowska, L. Bonanni et al., What electrophysiology tells us about alzheimer’s disease: a window into the synchronization and connectivity of brain neurons. Neurobiol. Aging 85, 58–73 (2020)

    Google Scholar 

  41. Q. Wang, Z. Han, X. Hu et al., Autism symptoms modulate interpersonal neural synchronization in children with autism spectrum disorder in cooperative interactions. Brain Topogr. 33(1), 112–122 (2020)

    Google Scholar 

  42. K. Li, H. Bao, H. Li et al., Memristive Rulkov neuron model with magnetic induction effects. IEEE Trans. Industr. Inform. 18(3), 1726–1736 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Nos. 61901530, 62071496, 62061008), and the Natural Science Foundation of Hunan Province (No. 2020JJ5767).

Author information

Authors and Affiliations

Authors

Contributions

CS: software, formal analysis, writing—original draft, and writing—review and editing. SH: conceptualization, methodology, and funding acquisition. KR: methodology. HW: discussion. KS: supervision, discussion, and modification.

Corresponding author

Correspondence to Kehui Sun.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Collective Behavior of Nonlinear Dynamical Oscillators. Guest editors: Sajad Jafari, Bocheng Bao, Christos Volos, Fahimeh Nazarimehr, Han Bao.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, C., He, S., Rajagopal, K. et al. Dynamics and chimera state in a neural network with discrete memristor coupling. Eur. Phys. J. Spec. Top. 231, 4065–4076 (2022). https://doi.org/10.1140/epjs/s11734-022-00699-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00699-z

Navigation