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Abstract Getting older affects both the structure of the brain and some cognitive capabilities. Until now,
magnetic resonance imaging (MRI) approaches have been unable to give a coherent reflection of the cog-
nitive declines. It shows the limitation of the contrast mechanisms used in most MRI investigations, which
are indirect measures of brain activities depending on multiple physiological and cognitive variables. How-
ever, MRI signals may contain information of brain activity beyond these commonly used signals caused
by the neurovascular response. Here, we apply a zero-spin echo (ZSE) weighted MRI sequence, which
can detect heartbeat-evoked signals (HES). Remarkably, these MRI signals have properties only known
from electrophysiology. We investigated the complexity of the HES arising from this sequence in two age
groups; young (18–29 years) and old (over 65 years). While comparing young and old participants, we
show that the complexity of the HES decreases with age, where the stability and chaoticity of these HES
are particularly sensitive to age. However, we also found individual differences which were independent of
age. Complexity measures were related to scores from different cognitive batteries and showed that higher
complexity may be related to better cognitive performance. These findings underpin the affinity of the
HES to electrophysiological signals. The profound sensitivity of these changes in complexity shows the
potential of HES for understanding brain dynamics that need to be tested in more extensive and diverse
populations with clinical relevance for all neurovascular diseases.

1 Introduction

Normal ageing has cascading effects on many cogni-
tive domains, and it inflicts the brain at multiple lev-
els ranging from sub- to macrocellular (e.g. [1, 2]). For
instance, older adults have particular difficulties with
episodic memory [3], working memory (e.g. [4]) or are
slower processing different stimuli (e.g. [5]). At the same
time, some aspects of cognition are maintained, such
as semantic memory ([6]) or emotional regulation [7].
However, the cerebral mechanisms that underlie this
better or lesser performance are still poorly understood
[8].
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Many studies based on magnetic resonance imag-
ing (MRI) have addressed how changes in the ageing
brain may occur. Among the various MRI methods,
functional MRI (fMRI), with more than 10,000 pub-
lished papers, is probably the most widely applied [9].
The blood oxygen level-dependent (BOLD; [10]) signal
obtained from fMRI is an indirect index of neural activ-
ity reflecting the neurovascular response. It depends
on multiple variables that can alter due to physiologi-
cal, pathological or psychological factors. Besides, the
BOLD signal mainly derives from venous blood, reflect-
ing the integrated flow and metabolism changes dur-
ing the transit through the brain. Hence, fMRI stud-
ies in ageing research may deliver inconclusive findings.
In this respect, studies have shown no clear direction.
The majority of studies have reported that responses
have been similar in both groups [8], but in some cases,
the magnitude of the BOLD response was reduced in
older adults [11], while in others, it was increased [12].
Reductions are often interpreted as cognitive deficits
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[13], while the increase is often considered compen-
satory [14] or a reduction in the selectivity of responses
[15]. Therefore, ageing processes are still not completely
understood, and a complementary method, which could
target other aspects of the brain dynamics, would be
desirable.

The heartbeat, essential for the brain to function,
is rarely considered directly responsible for cognitive
changes. This comes as a surprise because heart func-
tions also alter with age, which should, in turn, affect
cerebral blood flow. It is well known that several
heartbeat related effects influence conscious perception,
where the cardiac cycle may impact the perception of
visual or auditory stimuli (e.g. [16]). The existence of
heartbeat-evoked potential (HEP) in general is strong
evidence that the heartbeat influences neuronal func-
tions [17]. However, neither the origin of HEPs nor their
relation to ageing is clearly understood, partly due to
the low signal intensity in EEG or MEG and partly
due to our poor understanding of electrophysiology in
general.

A recent study by Kerskens and López Pérez [18]
may shed some light on the heart–brain relationship.
They discovered heartbeat-evoked signals in fast MRI
time series, which resembled some properties of HEPs;
(a) they appeared in a similar time window at 300 ms
after cardiac R-wave, and (b) they were only visible
if the volunteers were awake. Hence, MRI may allow
studying the origin of some electrophysiological phe-
nomena which, in contrast to the BOLD signal, are
directly related to brain activity. Combined with the
advantage that MRI signals can be localised, those sig-
nals may open up new opportunities. However, the con-
trast mechanism behind those heartbeat-evoked signals
(HES) is still unknown. Electromagnetic fields of brain
cells [19] as well as any known MRI contrast includ-
ing inflow, BOLD, T2/T1 relaxation, magnetisation
transfer or diffusion [18] could be excluded as poten-
tial mechanisms. Moreover, Kerskens and López Pérez
showed that MRI signals can, despite common believe
[20], behave non-classically, which is in accordance with
earlier controversial ideas connecting brain functioning
with quantum mechanics [21]. Recently, some studies
have indicated that quantum coherence in living organ-
isms may exist and be essential for their functioning
(e.g. [22, 23]) as well as influence brain activity and
affect cognition [24]. Therefore, even without interpre-
tational consent, HES are interesting for further explo-
rations.

So far, we know that HES show features of
dipole–dipole (or spin–spin) interactions. Those inter-
actions can be derived classically, referring to mul-
tiple spin echoes (MSE) or quantum mechanically.
The quantum mechanical derivation in fluids is com-
monly referred to as intermolecular multiple quantum
coherence (iMQC or just MQC). This naming conven-
tion is somewhat misleading because of the equiva-
lence to the classical derivation [25], which indicates
that the MRI signal contains no quantum features.
Therefore, MQC has not traditionally been considered
a powerful tuning element for enhancing or explaining

functions in biology [26]. Also, due to its low signal-to-
noise ratio, MSE/iMQC sequences have not been con-
sidered for fast time series either. However, the use of
fast time series results in saturated signals, in quantum
mechanical terms “mixed quantum states”, which are
necessary to detect those heartbeat-evoked signals [18]
. For that reason, those signals deviate from the classi-
cal MSE/iMQC signals. A further investigation of the
neuronal basis may help to shed light on the underly-
ing contrast mechanisms. In this respect, it has been
shown that the HES were robust and reliable to repro-
duce [18]. Nevertheless, HES showed high variability
and complexity, suggesting that the interaction between
the brain and the heart and its complexity would be
high dimensional [24, 27].

Recent studies have shown that high complexity is
characteristic of healthy systems and they can degrade
because of disease or ageing [28]. Thus, if this mecha-
nism is vital for cerebral dynamics, the complexity of
these fluctuations needs to be high and any variation
in the dynamics with age should affect the complexity
of the system.

Here, we want to investigate, for the first time, the
HES in two age groups (one between 18–29 years and
the other + 65 years) and study how the dynamical
complexity of the signal varies in each of them. We use
a broad range of dynamic systems measures to charac-
terise these fluctuations as entirely as possible. First,
we applied recurrence quantification analysis (RQA;
[29]), which is an increasingly popular method to anal-
yse dynamic changes in behaviour in complex systems.
This concept has been used to study physiological sig-
nals [30, 31], heart rate variability [28] or the dynamics
of heart rhythm modulation [32]. The main benefits of
RQA compared to standard analysis reside in its sensi-
tivity to small changes in the system dynamics [28]. Sec-
ondly, we employed multifractal detrended fluctuation
analysis to extract the fractal properties of the signal
(MFDFA; [33]). Multifractal analysis is another efficient
chaos theory method to study the fractal scaling prop-
erties and long-range correlations of noisy signals [27]
(for a review see [34]). Differences if fractal measures as
a consequence of ageing have been found in electroen-
cephalography (EEG) [35] or due to increased heartrate
variability (HRV) changes [36]. Finally, we relate these
measures with different cognitive batteries and show
that those quantum fluctuations may be essential for
cerebral dynamics and cognitive functioning.

2 Methods

2.1 Participants

60 subjects (29 participants between 18 and 29 years
old, and 31 participants over 65 years old) were scanned
with the protocols approved by the St. James Hos-
pital and the Adelaide and Meath Hospital, incorpo-
rating the National Children Hospital Research Ethics
Committee. All participants were adults recruited for a
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larger study [37–39] and came from the greater Dublin
area. All participants underwent the Cambridge Neu-
ropsychological Test Automated Battery (CANTAB;
[40]) which has been used to detect changes in neu-
ropsychological performance and include tests of work-
ing memory, learning and executive function; visual,
verbal and episodic memory; attention, information
processing and reaction time; social and emotion recog-
nition, decision making and response control. The
CANTAB scores were normalised for age and IQ. Par-
ticularly, the following subtest were administered:

– The paired associate learning test is a measure of
episodic memory where boxes are displayed on the
screen, and each one has a distinct pattern. The boxes
are opened in random order, revealing the pattern
behind the box. In the test phase, patterns are indi-
vidually displayed in the centre of the screen, and par-
ticipants must press the box that shields the respec-
tive pattern.

– Pattern recognition memory is a test of visual pat-
tern recognition memory in which the participant is
presented with a series of visual patterns, one at a
time, in the centre of the screen. In the recognition
phase, the participant is required to choose between
a pattern they have already seen and a novel pat-
tern. In this phase, the test patterns are presented in
the reverse order to the original order of presentation.
This is then repeated, with new patterns. The second
recognition phase can be given either immediately
(immediate recall) or after a delay (delay recall).

– The spatial working memory test assesses spatial
working memory in which boxes are presented on
the computer screen and hidden behind one of the
boxes is a yellow circle. Participants must find the box
where the yellow circle is located. As the task pro-
gresses, the number of boxes on the screen increases.
We analysed the spatial working memory strategies
(i.e. the number of times participants begin a new
search strategy from the same box).

Moreover, participants performed the trail making test
(TNT; [41]) which is a neuropsychological test of visual
attention and task switching. TNT test that can pro-
vide information about visual search speed, scanning,
speed of processing, mental flexibility, as well as exec-
utive functioning [42].

2.2 Data acquisition

Each participant was imaged with a 3.0 T Philips
whole-body MRI scanner (Philips, The Netherlands)
using a standard single-shot gradient-echo echo planar
imaging (GE EPI) sequence operating with an eight-
channel array receiver coil in all cases. The parame-
ters of the EPI time series sequence were as follows:
radiofrequency flip angle = 30◦, repetition time (TR)
= 60 ms and the echo time (TE) = 18 ms with a voxel
size was 3.5 × 3.5 × 3.5 mm, matrix size was 64 × 64,
SENSE factor 2 (reduction factor of the phase encoding

Fig. 1 Example of the acquisition model which includes the
imaging slice (central red line) and the REgional Saturation
Technique (REST) slabs above and below the imaging slice
both 5 mm thick and separated 15 mm and 20 mm, respec-
tively

steps compensated by receiver coil design), bandwidth
in readout direction was 2148 Hz (data sampling rate).
In addition, two saturation slices of 5 mm in thick-
ness were placed parallel to the imaging slice (15 mm
above and 20 mm below; see Fig. 1). These slabs were
applied to introduce asymmetrical magnetic field gradi-
ents (labelled with “s” in Fig. 2) of 6 ms duration and
21 mT/m gradient amplitude between two EPI scans
which leads to a condition that can generate zero quan-
tum coherence (sZQC; gradients labelled with “r” and
“c” in Fig. 2 also contributed to the asymmetry). As
a result, the sequences time series produced alternat-
ing sZQC. The signal amplitude depends on the slice
orientation and changing the slice orientation varies
the demagnetisation field. The duration and strength
of the gradients influence the correlation distance d
(see Supplementary Figure 4 for a full description see
[18, 43]). The pulse sequence scheme indicating most
of the parameters above is shown in Fig. 2. The imag-
ing slice was set coronal above the ventricle to avoid
pulsation effects (see Fig. 1). The average angulation
of the imaging slice was 14.76 ± 5.65◦. The angula-
tion was in accordance with the other sequences in the
imaging protocol. It was 5 ± 5◦ off the optimum mag-
netic field directions, which reduced the sZQC effect
only slightly.The total duration of the scan was 1 min.

Anatomical MRI images in all studies included a
high-resolution sagittal, T1-weighted magnetisation-
prepared rapid gradient-echo (MP-RAGE) (TR = 2.1
s, TE = 3.93 ms, flip angle = 7◦). The sequence was
acquired after the resting-state fMRI part of the ses-
sion. The radiographer always contacted the partici-
pants before the acquisition to make sure that they were
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Fig. 2 MRI acquisition
sequence

awake. This step is important given that HES are sen-
sitive to changes in wakefulness of the participant [18].

2.3 Signal pre-processing

All calculations were developed in a Dell Optiplex 790
with 12 Gb RAM using Matlab 2017a (The MathWorks
Inc., Natick, MA, 2017). The MRI time series was cal-
culated as the average signal across all the voxels in
the imaging slice. Since motion correction could not be
applied due to the single slice nature of the experiment,
average time series were visually inspected in search for
irregularities which were manually removed from the
analysis leaving the rest of the time series unaltered. In
addition, the data was not smoothed to avoid removing
high frequencies which may lead to the loss of infor-
mation [44]. Manual segmentation was used to create a
mask to remove cerebrospinal fluid (CSF) contributions
which were later eroded to avoid partial volume effects
at the edges. The first 100 scans were removed to avoid
signal saturation effects

2.4 Recurrence quantification analysis

We used recurrence quantification analysis (RQA) to
analyse the dynamical temporal characteristics of the
MRI signals. RQA quantifies the repeated occurrences
of a given state of a system (i.e. recurrences) by
analysing the different structures present in a recur-
rence plot (RP), which is a graphical representation of
the recurrences in the dynamical system [29]. For a MRI

time series x and radius parameter ε we define recur-
rence as:

|Ri, j |=
⎧
⎨

⎩

1 if ||xi − xj ||< ε,

0 otherwise.

where i and j represent each time point of the time
series x with length N. The result is a NxN RP of 1s and
0s which contains all the recurrent events in x . A series
of variables describing the dynamics can be obtained
from this plot [29]. In our analysis, we considered the
following RQA measures [45]:

• Determinism (Det): it represents a measure that
quantifies repeating patterns in a system, and it is
a measure of its predictability. Det is defined as fol-
lows:

Det =

∑N
l=lmin

lP (l))
∑N

l=1 lP (l))
,

where l is the length of a diagonal line present in the
RP, P(l) is the distribution frequency of diagonal line
lengths, N is the maximum diagonal line length, and
lmin is the minimum diagonal line length. Regular,
periodic signals, such as sine waves, have higher Det
values, while uncorrelated time series cause low Det.
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• Mean line (MeanL): it is the average length of repeat-
ing patterns in the system and it is calculated as:

MeanL =

∑N
l=lmin

lP (l))
∑N

l=lmin
P (l))

.

It represents the mean prediction time of the signal, a
measure of chaos or divergence from an initial point.

• Entropy (Ent): it is the Shannon entropy of the dis-
tribution of the repeating patterns of the system and
it is calculated as:

Ent = −
N∑

l=lmin

P (l)lnP (l)).

If a signal has high entropy, it exhibits diversity in
short- and long-duration periodicities.

• Laminarity (Lam): it determines the frequency of
transitions from one state to another, without
describing the length of these transition phases. Lam
is computed as:

LAM =

∑N
v=vmin

vP (v)
∑N

v=1 vP (v)
,

where v is the length of a vertical line present in the
RP, P(v) is the distribution frequency of vertical line
lengths, N is the maximum vertical line length and
vmin is the minimum vertical line length. It indexes
the general level of persistence in some particular
state of one of the time series [46].

• Trapping time (TT): it represents the average time
the system remains on a given state and it is a mea-
sure of the stability of the system:

TT =

∑N
v=vmin

vP (v)
∑N

v=vmin
P (v)

.

It was calculated here using the tt function from the
cross-recurrence plot (CRP) toolbox for [47].

• Maximum line (MaxL): it is the largest Lyapunov
exponent of a chaotic signal, which gives the longest
time spent in a single state by the system [48]. It can
be calculated as:

Lmax = max(li; i = 1, . . . , Nl).

Three critical parameters need to be set to calcu-
late the recurrence plots. First, the smallest suffi-
cient embedding dimension was determined using the
fnn function [49] within the CRP Toolbox (Marwan,
N.: Cross Recurrence Plot Toolbox; [50], for MAT-
LAB, Ver. 5.22 (R31.2), http://tocsy.pik-potsdam.de/
CRPtoolbox/). This function estimates the minimum

embedding dimension where the false nearest neigh-
bours vanish. We applied the fnn to all time series and
obtained an average value of 15, which agrees with the
typical values recommended for biological signals [30].
The second parameter is the delay which we calculated
using the mi function from the CRP Toolbox [50, 51].
This function finds the non-linear interrelations in the
data and determines which delay fulfils the criterion
of independence. In the same way as the embedding
dimension, we applied the mi function to all time series
and we obtained an average value of 3. Finally, several
criteria have been suggested for the choice of the recur-
rence threshold [52]. Here, we adapted the radius for
each time series using the embedding dimension and
delay computed together with a recurrence rate suffi-
ciently low (i.e. RR = 3%) [47]. Additional parameters
in the RQA calculations were Euclidean normalisation
for each time series and minimum line length equal to
2.

2.5 Multifractal detrended fluctuation analysis

In biological systems, the coupling between different
systems often exhibits [27] different spatial and tem-
poral scales and hence its complexity is also multi-
scale and hierarchical [27]. Moreover, biomedical sig-
nals often display temporal and spatial scale-invariant
properties that indicate a multifractal structure. These
structures can be defined by a multifractal spectrum of
power-law exponents whose properties might be quan-
tified with a few variables [33]. For instance, changes
in the multifractal spectrum have been related to the
variation with age or disease of the scale-invariant struc-
tures of some biomedical signals (e.g. [36]). Thus, to
analyse the scale-invariant properties of the MRI seg-
ments and their changes with age, we used multifractal
detrended fluctuation analysis (MFDFA). We first cal-
culated the multifractal spectrum, D, of each time series
using the MFDFA Matlab Toolbox [33]. The multifrac-
tal spectrum identifies the deviations in fractal struc-
ture within time periods with large and small fluctua-
tions [33]. Each spectrum was computed using a window
length with a minimum value of 2 and a maximum value
of half the length of the time series. The q-order sta-
tistical moments were chosen between − 11 and 11 and
divided into 21 steps (see further description in [33]).

Two variables were calculated from each fractal spec-
trum, i.e. the width of the spectrum W and the position
of the spectrum maxima H . The width W is calculated
by subtracting the lower part of the spectrum, h, from
the upper part of the spectrum, h [33, 36, 53]:

W = hmax − hmin,

where a small width indicates that the time series has
fewer singularities and tends to be more monofractal.
Finally, the H variable represents the value h in which
the singularity spectra has its maximum [36]:

H = h(Dmax).
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The position of h moves to higher values when the
stronger singularities are present. Highly deterministic
signals can often be explained by a lower number of
fractal dimensions and are characterised by smaller W
and H due to a decrease in the number of singularities.

2.6 Statistical analysis

Before any statistical analysis, all variables were con-
verted to z scores. Those participants having z -scores
larger than 3 standard deviations in three non-linear
variables or more were rejected from the analysis.
In total, only one participant in the old group was
removed. Independent t tests were applied to compare
the results. The participants grouped by age (young or
old) were the independent variable and their RQA and
fractal variables were the dependent variables. Given
the number of variables calculated, methods like logistic
regression might be a better choice to find differences
between both age groups. However, RQA and fractal
measures tend to be highly correlated within each type
of non-linear analysis. This complicates the inclusion of
any of the variables in any regression model since the
model does not survive a second step and just one vari-
able is enough to explain the variance between groups.
Although highly correlated, these variables measure dif-
ferent things, and we thus chose independent t tests to
search for differences between both age groups. How-
ever, we additionally created a logistic regression model
with all the RQA and fractal measures as predictors and
age group as a dependent variable to test the accuracy
of these measures to differentiate between age groups
(see Supplementary Materials for the full results of the
logistic regression analysis). Inspection of Q–Q plots
was carried out to all the measures to check if the
data were normally distributed. Additionally, Levene’s
test for equality of variances was applied and, in those
cases, where this assumption was violated, a t statis-
tic not assuming homogeneity of variance were com-
puted on these measures. Finally, Spearman’s correla-
tions between the RQA variables and the cognitive bat-
teries were performed.

3 Results

3.1 Non-linear dynamics of the heart-evoked signals

First, we tested how the non-linear dynamics of the
HES varied with age across all participants. Signifi-
cant correlations with age were found for Lam (r(59)
= 0.228, p < 0.001) or TT (r(59) = 0.29, p < 0.001).
Additional correlations were Det (r(59) = 0.03, p =
0.18) , MeanL (r(59) = 0.08, p < 0.02), MaxL (r(59) =
0.11, p < 0.029) and Ent (r(59) = 0.12, p < 0.03) (see
also Supplementary Figures 1 and 2). At a group level
all the RQA variables but the DET were statistically
significantly higher in the old group in comparison to

Table 1 Group mean averages of the RQA and MDFDA
variables extracted from the ZQC weighted time series for
the young and old groups (p < 0.05 (*), p < 0.01 (**), p <
0.001 (***))

Parameters Young group Old group

Det 32.16 ± 10.12 35.72 ± 11.99

MeanLine* 2.81 ± 0.34 3.07 ± .51

MaxLine** 99.10 ± 38.55 135.53 ± 58.63

Ent * 0.77 ± 0.19 0.92 ± 0.24

Lam** 35.42 ± 8.24 46.50 ± 14.00

TT*** 2.24 ± 0.11 2.48 ± 0.26

W *** 0.15 ± 0.08 0.27 ± 0.07

H *** 0.02 ± 0.01 0.03 ± 0.01

the young one (see Table 1 for group averages): Mean-
Line (t(57) = 2.23, p = 0.02; d = 0.58), MaxLine (t(57)
= 2.81, p = 0.007; d = 0.73), Ent (t(57) = 2.62, p =
0.01; d = 0.68), Lam (t(57) = 3.68, p = 0.001; d =
0.96) and TT (t(57) = 4.57, p < 0.001; d = 1.19) and
Det (t(57) = 1.23, p = 0.22; d = 0.32).

Likewise, significant correlations with age were found
for W (r(59) = 0.343 , p < 0.001), H (r(59) = 0.183
(see also Supplementary Figures 1). The fractal prop-
erties of the HES in the old group were statistically
higher in W (t(57) = 5.44, p < 0.001; d = 1.41) and H
(t(57) = 3.53, p < = 0.001; d = 0.92) in comparison to
the young group, suggesting a more chaotic behaviour
in the old population.

Finally, we run a logistic regression model with all
the RQA and Fractal as predictors and age group as a
dependent variable. The model was significant (χ2(8) =
38.57, p < 0.001) and both groups were classified with
an overall accuracy of 86.4%,(see Supplementary Anal-
ysis for full logistic regressions results). This highlights
the sensitivity of the HES to changes in age.

3.2 Do group differences come from movement
or cognitive differences?

Since the HES are sensitive to movement, we explored
the relationship between the non-linear variables and
motion quality control variables from the rs-fMRI as
a proxy for potential average movement of the par-
ticipant. Although the information was not available
for the young group, there were no significant correla-
tions between these measures (see Table 2) or in other
words, the non-linear dynamics in the old cohort were
not worsened by motion.

Finally, we explored any possible relation to cogni-
tive measures and tests performed during the study.
CANTAB scores showed consistent negative correla-
tions and trends (see Table 3, Fig. 2) between visual
memory scores (pattern recognition memory and work-
ing memory) and the RQA variables, while no corre-
lations arose with the TNT scores. Consistently, young
participants that showed higher complexity (i.e. smaller
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Table 2 Spearman correlations between quality control
measures from the rs-fMRI session and the non-linear vari-
ables from the ZQC signals

Variables QC max movement QC mean movement

Det − 0.36 (0.07) 0.13 (0.50)

MeanLine − 0.10 (0.60) 0.00 (0.97)

MaxLine − 0.30 (0.13) − 0.01 (0.95)

Ent − 0.26 (0.19) 0.08 (0.69)

Lam − 0.27 (0.17) 0.17 (0.38)

TT − 0.13(0.52) 0.22 (0.27)

W 0.06 (0.77) 0.02 (0.92)

H − 0.14 (0.47) − 0.06 (0.77)

In these correlations, n was equal to 27 since movement
information was not available for the young group, one par-
ticipant did not have movement information and another
did not pass quality control (see Sect. 2.5)

non-linear variables) also had better cognitive scores.
Interestingly, age only correlated in only one of tests
(Pattern Recognition Mem. (delayed recall): r(59) = −
0.25 , p < 0.05) while no relations arose in the other
tests (Pat. Recognition Mem. (immediate recall): r(59)
= − 0.13, p = 0.29, paired associates learning: r(59) =
− 0.00, p = 0.94 ; Spat. working Mem. (Strategy): r(59)
= − 0.14, p = 0.27; Trial A: r(59) = 0.20, p = 0.13;
Trial B: r(59) = 0.18, p = 0.18). Altogether, there were
significant changes in complexity with age and those

changes were related to some cognitive scores, which in
turn did not show any age effect. This suggests that
the complexity changes of the HES may be sensitive to
some aspects of cognition (Fig. 3).

4 Discussion

In this paper, we have analysed the dynamical com-
plexity of the heartbeat-evoked signal (HES) in brain
tissue of two age groups. We found quantitative differ-
ences between both age groups, which were related to
variations in complexity and chaos of the measured sig-
nals. Those variables, which showed the highest corre-
lation (TT, W, H ), had previously been reported as the
strongest indicators of wakefulness/conscious awareness
[18]. Additionally, we found that variables, which were
less correlated with age, showed correlations with some
CANTAB scales. A higher complexity of the signals
was related to better cognitive performance, which in
contrast, were not correlated to age. Interestingly, the
CANTAB scales were related to short-term memory,
which underpins the hypothesis further that the MR
signals are of similar origin to HEPs.

In an earlier study, Kerskens and López Pérez
reported that body movement introduced by hyper-
ventilation can also reduce the signal amplitude. At
the same time, hypoventilation which increases cerebral
pulsation and blood flow has no qualitative effect on the
signal. From this findings, we concluded that below a
certain threshold, HES may not be effected by motion

Table 3 Spearman correlations between the non-linear variables of the ZQC signals and the CANTAB and TNT scores

Variables Pat.
Recognition
Mem.
(immediate
recall)

Paired
Associates
Learning

Spat. working
Mem.
(Strategy)

Pattern
Recognition
Mem. (delayed
recall)

Trial A Trial B

Det − 0.31
(0.01)*

0.06 (0.62) − 0.19 (0.13) − 0.02 (0.87) 0.05 (0.69) − 0.02 (0.87)

MeanLine − 0.33
(0.009)**

− 0.04 (0.71) − 0.17 (0.17) − 0.13 (0.31) 0.00 (0.98) − 0.04 (0.74)

MaxLine − 0.34
(0.008)**

− 0.18 (0.16) − 0.26 (0.04)* − 0.19 (0.12) − 0.00 (0.96) 0.02 (0.86)

Ent − 0.33
(0.009)**

0.06 (0.65) − 0.21 (0.10) − 0.12 (0.33) 0.09 (0.49) − 0.04 (0.79)

Lam − 0.29
(0.02)*

0.03 (0.78) − 0.34
(0.008)**

− 0.09 (0.48) − 0.04 (0.72) − 0.05 (0.68)

TT − 0.25
(0.05)+

− 0.08 (0.51) − 0.29 (0.02) 0.18 (0.15)

W − 0.18 (0.14) −0.04 (0.71) − 0.13 (0.29) − 0.17 (0.17)

H − 0.24 (0.06) 0.04 (0.75) − 22 (0.10) − 0.09 (0.48)

Significant correlations are highlighted in bold
In these correlations, n varies between 59 (CANTAB scores) and 55 (TNT scores), since one participant did not pass quality
control (see Sect. 2.5) and the measures were not available to all of them. p values are in parenthensis (trend (+), p <
0.05(*) and p < 0.01(**))
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Fig. 3 Examples of linear regressions between mean line (a) and entropy (b), and standardised CANTAB pattern recog-
nition memory scores (inmediate recall), and between laminarity (c) and trapping time (d), and standardised CANTAB
working memory strategy scores

[18]. In accordance with qualitative assessments of the
time course (see Supplementary Figure 3 for examples),
where we saw a signal amplitude decline in the 65 +
group, we investigated if movement or pulsatile motion
due to brain atrophy [54] could have influenced our
results. Although the information was not available for
the young group, motion quality control variables from
an fMRI study within the same session did not correlate
with any non-linear variables (see Table 2). Thus, we
can conclude that motion was not significantly relevant.
Regardless of this, future studies using the sequence
should try to minimise the effect of movement during
the data acquisition (e.g. adding extra cushions to hold
the head), which might help improve the intensity of
the signals [18].

Next, we studied how the HES declines with changes
in age. To check that, we first quantified the apparent
differences between both groups using non-linear time
series analyses to determine changes in the dynamics
of the MRI signals. First, we applied recurrence quan-
tification analysis (RQA), which was proven to be sen-
sitive to small changes in the system dynamics and a
powerful discriminatory tool to detect significant differ-
ences between both age groups. All the RQA measures

(see Table 1) were lower in the young group, suggest-
ing differences in the complexity of the underlying sig-
nal dynamics in both populations. Second, we applied
fractal analysis to study the fractal scaling properties
and long-range correlations of the signals. We showed
an increase in the number of singularities with age,
which is characterised by an increase in the width and
position of the spectral maxima [33]. These differences
were supported by the RQA entropy which denotes
the Shannon entropy of the histogram of the lengths
of diagonal segments and thus indicates the complex-
ity of the deterministic structure of the system [28].
What is more, logistic regression analysis showed the
predictability power those complexity measures have,
with 86% of all participants classified accurately. Alto-
gether, those results are in line with recent studies indi-
cating that higher complexity in a system is a feature of
healthy dynamics [28] or a higher degree of functional
specialisation and integration in brain dynamics [55]
and that this complexity declines with disease and age
[56]. However, although there were group differences in
complexity and most of the variables correlated with
age, only half of them survived multiple significance
corrections (i.e. LAM, TT, W and H ). Those measures
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in particular, are related to the stability and chaotic-
ity of a system, suggesting that more chaotic and sta-
ble behaviour (i.e. less complex) are characteristic of a
decline with age. Thus, these complex measures might
be used to spot differences in the underlying dynam-
ics of the HES. Further testing acquiring physiological
variables (e.g. blood pressure, heart rate and breathing)
is needed to understand the origin of these HES.

Those variables which were not strongly correlated
with age showed significant negative correlations with
some CANTAB scores (see Table 3). Similarly to other
studies showing that lower values are related to healthy
dynamics (e.g. [33, 57]), we found that lower scores
(i.e. higher complexity) were related to better cognitive
scores. This underpins the hypothesis that the HES are
similar to HEPs and related to some aspects of cog-
nition. Particularly, the relations with pattern recog-
nition memory and working memory subscales sug-
gest a link between the HES and short-term mem-
ory abilities. A potential explanation for why the HES
was correlated to pattern recognition memory and spa-
tial working memory is that the acquisition slice was
roughly located in parietal and posterior cingulate
regions. These are areas associated with these cogni-
tive domains [58, 59]. Paired associate learning, how-
ever, is a hippocampus-based task [60]) and therefore
one would not expect to find a correlation with the
measured signal. Besides, fMRI studies have shown that
healthy old adults present higher activity levels in some
brain regions during the performance of cognitive tasks,
and these changes coexist with disrupted connectivity
(for a review, see [61]). However, to the best of our
knowledge, there are no fMRI-based signals that can
predict these CANTAB scores consistently. This is espe-
cially surprising since the HES represents the average
over the imaging slice and is a very rough and functional
measurement. More importantly, the pattern recogni-
tion memory and working memory subscales which were
strongly correlated with the non-linear variables, did
not correlate with age. This finding emphasises the sen-
sitivity of the HES towards cognitive changes. This is
in line with the relation of the sZQC signal to con-
scious awareness, which Kerskens and Lopez Perez [18]
reported earlier. The highly synchronisation over the
imaging slice indicates that the signal origin could be
a global physiological effect which may be essential for
understanding the underlying brain computations.

However, despite the promising results, several limi-
tations arise in this study. First, the acquisition proto-
col to obtain HES required fast repetition times, limit-
ing the number of imaging slices to just one. The use
of one imaging slice complicates the study of particular
areas. It could induce variability in the results across all
the participants, even when the position of the imag-
ing slice is carefully planned. Consequently, additional
slices should be acquired to study a larger region. This
would allow studying specific brain areas and quan-
tifying movement. Some approaches could be used to
overcome this limitation. For example, next-generation
MRI systems can acquire three or more imaging slabs
using Multi-band excitation [62] with the same time

resolution. A second improvement can be achieved by
increasing the number of channels in the receiver coil,
allowing the acquisition of data with shorter repetition
times and a better signal-to-noise ratio. Future research
should focus on expanding the sequence protocol to
cover larger brain areas that would allow the use of
the sequence in a wide range of studies. Secondly, with
the information available, we could not differentiate if
the group effects originated from an age-related reduc-
tion of wakefulness or an age-related loss of conscious
awareness. Even though the radiographer was checking
that all volunteers were awake before the data acqui-
sition, under these conditions (i.e. testing in a supine
position inside a dark room with no specific instruc-
tions but to remain still) participants in the older group
are more likely to feel sleepy, thus potentially affecting
their wakefulness [18]. In future studies, this could be
controlled with eye-tracking equipment or further stim-
ulation. However, it also provides a new tool to observe
the volunteers’ wakefulness, which could improve MRI
studies in the future. Further, it allows studying if the
effect is reversible by wakening up the participants or
if it is a real loss in awareness or other age-related
declines. Thirdly, there was no access to any heart rate
or physiological cardiac measures at the time of the
experiment, which could be helpful given the impor-
tance of these cardiovascular fluctuations. Finally, the
group sizes in this study were small, and the results
need to be considered preliminary. Further research is
needed to confirm these findings.

5 Conclusion

We have provided evidence that HES exist in the brain
and their complexity decreased with age. Consistent
with the idea that higher complexity is related to
healthier dynamics, we showed quantitatively that the
decline of these fluctuations is related to a decrease in
the complexity of the signal time series with age. Addi-
tionally, some aspects of the higher complexity were
related to better cognitive performance, which, like the
CANTAB results, were not age related. Hence, HES
can differentiate between brain functions that decline
with age and those that do not. Altogether, the com-
plex properties of the HES provide a potential mecha-
nism for understanding brain dynamics that need to be
tested in more extensive and diverse populations with
clinical relevance for all neurovascular diseases.
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