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Abstract For the safe operation of vehicles and full utilization of lightweight materials, assurance of struc-
tural integrity is a prerequisite at all times. Structural health monitoring with permanently installed
transducers offers a great advantage for primary load-bearing structures of all means of transportation
and other safety-relevant components such as hydrogen tanks: allowing damage detection during opera-
tion. One means to detect internal defects is the method of guided ultrasonic waves (GUWs), which can
be generated and recorded by piezoelectric transducers. GUWs propagate along the elongated dimension
of a structure, and a transducer network can completely cover and monitor structures. Defects can alter
the signal along affected paths and allow for their detection. However, a challenge and obstacle for the
application of such a testing technique in the service of means of transportation is the large influence of
temperatures. These influences are difficult to distinguish from the effect of defects. One approach to over-
come this difficulty is the “continuous baseline update”. Recurrence quantification analysis is tested and
compared to established features as a new approach to “continuous baseline update” in this paper. Publicly
available GUW data (http://www.openguidedwaves.de/) recorded under varying temperature conditions
have been used to show how the methods perform. They reliably separate temperature and damage effects,
while the recurrence quantification analysis yields the best results.

1 Introduction

Guided ultrasonic waves (GUWs) are used for struc-
tural health monitoring (SHM) in plate-like structures
as the waves are sensitive to damage causing a change in
wave propagation. SHM data of GUW propagation are
recorded by transducers that are permanently bonded
to the structure to be monitored. However, GUWs and
the SHM system are also sensitive to variations in envi-
ronmental and operational conditions (EOC) that do
not relate to damage [1].

Thus, a change in the data can indicate the occur-
rence of damage when the measurement is compared
with a reference signal, the so-called baseline, which
was recorded on the healthy structure under the same
EOC. Methods are needed to overcome the effects of
non-damage-related changes in the recorded data, caus-
ing differences in the baseline. In [2] a review of such
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methods is provided and discussed. Time-domain sub-
traction methods have been developed, not using a pre-
stored fixed baseline or baseline set but instantaneously
measured GUW signals [3], instantaneous baseline mea-
surements [4], relative baselines [5], and updating base-
lines [6–8], for damage detection to overcome challenges
in a dynamic environment. The method described in [6]
collects the baselines during service life and the baseline
set grows continuously. The methods proposed in [7]
and [8] are based on a continuously updated baseline. In
[7] the “continuous baseline update” is used for fatigue
crack monitoring, in [8] for damage detection on a car-
bon fiber reinforced plastic (CFRP) plate under vari-
able temperature conditions. Different feature extrac-
tion methods are applied to evaluate signal changes for
damage detection. Commonly used simple methods are
subtraction of waveforms or comparison of amplitudes
(maximum amplitude method). Other approaches are
based on data reduction like principal component anal-
ysis to compute the eigenvalue of a signal, i.e., one value
characterizes a recorded senor signal. Computation can
be executed via eigenvalue decomposition or singular
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Fig. 1 Determination of the signal discrepancy (SD) according to the continuous baseline update approach using the
example of MaxSignal (maximum amplitude values as extracted feature); data used from [8] and explained in Fig. 2.
a Extracted maximum amplitude values without (undamaged, with indices i , white region) and with reversible damage
D04 (indices j , gray region). b SD is calculated according to the two arrows (upper arrow: no damage detected so far; lower
arrow: after damage detection). The decisive factor in the damaged case is the fixation of the last undamaged measurement
(Ai=end) as the baseline. For examination purposes, we performed fixation manually

value decomposition, which differ in numerical perfor-
mance, while singular value decomposition is advanta-
geous.

In this paper, recurrence quantification analysis
(RQA) is presented as a new approach to continu-
ous baseline update and compared to the two selected
established, non-interdependent signal features maxi-
mum amplitude (MaxSignal) and singular value decom-
position (SVD) using datasets under varying tempera-
tures with reversible damage (represented by an alu-
minum disc mounted on the surface of the specimen by
tacky tape) at different positions [8].

2 Theoretical background

2.1 Continuous baseline update

The basic idea of the continuous baseline update
approach is to compare an actual measurement at time
t1 with a former one at time t0 (the so-called base-
line) to separate temperature- and damage-induced sig-
nal changes. Extracted features from both the baseline
and the actual signal are compared and evaluated. For
this purpose, a wide variety of non-interdependent sig-
nal features can be used. One challenge of the con-
tinuous baseline update approach is to find and use
the most suitable signal feature for damage detection.
This paper investigates, as examples, three different fea-
tures. The studied new approach of recurrence quan-
tification analysis is further enhanced in Brandt et al.
[9]. Figure 1 shows and explains the continuous base-
line update approach exemplarily using the maximum
amplitude value of the signals as an extracted feature.

The continuous baseline update approach assumes
that damage causes higher signal changes than temper-
ature changes do. If damage suddenly occurs, the sig-
nal change will exceed a defined threshold and indicate
damage. If the threshold is not exceeded, the measure-
ment at time t1 will replace the signal at time t0 and

become the new baseline to compensate for the temper-
ature effect. If damage is recognized, the baseline will
be fixed and no longer be updated.

To subsequently define a threshold, the signal dis-
crepancy [8]:

SD =
∣
∣
∣
∣

Fa − Fp

Fp

∣
∣
∣
∣
· 100%, (1)

is introduced. Equation (1) calculates the difference
between the feature of the previous (baseline) signal Fp

(at t0) and the one of the actual signal Fa (at t1) and
describes a percent change. If a threshold is exceeded,
the calculation of SD changes according to the fixed
baseline from that point on. In Eq. (1), Fp remains a
constant value and Fa changes with a new measurement
(see gray arrow in Fig. 1: Fp = Ai=end = const). For
the evaluation of the feature extraction methods, this
paper introduces two different thresholds (see Fig. 3 for
illustration):

Q =
SD3
SD1

, (2)

R = SD3 − SD2. (3)

Here SD1, SD2, and SD3 are calculated according
to Eq. (1) and denote characteristic signal discrepancy
values with SD1: highest SD value in the region with-
out damage; SD2: SD value of the last measurement
before damage insertion; SD3: SD value of the first mea-
surement after damage insertion. Q describes the ratio
of the SD value of the first signal after damage inser-
tion (SD3) and the highest undamaged one (SD1). R is
the difference between the SD value of the first signal
after damage insertion (SD3) and the last one before
(SD2). Thus, Q is based on the SD ratio, while R uses
changes of two subsequent SD values to detect damage.
For application, the two thresholds differ in the need
to store data. Q needs to check the maximal SD every
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time until damage insertion, while R only uses the SD
of the previous measurement.

2.2 Recurrence quantification analysis

Recurrence quantification analysis (RQA), a tool of
(nonlinear) time series analysis, has started with the
invention of recurrence plots (RPs) in 1987 [10]. The
motivation was to create a two-dimensional, visually
accessible plot for high-dimensional nonlinear chaotic
systems [11].

When applied to time series, the usual first step is to
create a representation in a higher-dimensional space.
The usual method of time delay embedding [12] is sim-
ple in implementation with delayed versions of the time
series as additional dimensions, involving time delay τ
and embedding dimension d (details and execution e.g.
[13, 14]).

A recurrence matrix is generated from the multi-
dimensional (embedded) time series through the follow-
ing steps:

• Creation of a distance matrix

Di, j = ‖xi − xj‖, (4)

having the size of the length n of the embedded time
series to the square. The matrix thus contains the
distances ‖‖ (e.g. Euclidean distance) between every
(embedded) time point xi and xj at the ith and j th
position.

• Creation of a recurrence matrix (thresholded distance
matrix)

Ri, j = θ(ε − Di, j), (5)

where the Heaviside-function θ maps positive values
to one and negative values to zero. Thus, a pair of (time)
points in space that are ”near” to each other (nearer
than a threshold ε) create a recurrence point in the
matrix, with value one.

The visualization of the recurrence matrix as a black-
and-white recurrence plot (RP) gives insights into
dynamical systems, e.g., distinguishing between peri-
odic, random, or chaotic systems [13] or detecting drifts
[10]. A few years after its creation, recurrence quantifi-
cation analysis (RQA) as the quantification of the infor-
mation that is contained in an RP into several features
emerged [15–17] (see [18] for a short historical review).
The simplest feature is the recurrence rate RR, the ratio
of recurrence points to all points of the plot:

RR =
n∑

i, j

Ri, j

n2
, (6)

which is used in this paper. (To be exact, the main
diagonal of the recurrence plot, the line of identity, is
not taken into account for the computations in this

paper. The line of identity contains only a recurrence
point because a point is always identical to itself, and
thus also recurrent with itself.)

The determination of embedding parameters and the
recurrence threshold ε can be chosen in several ways
[17]. We apply a data-driven approach, cf. [14]: param-
eters are varied in a wide range, and the parameter set
leading to optimum results (depending on the task) is
chosen.

RQA has developed over the last 30 years from a
method for research on chaotic systems to a versatile
method of time series analysis; its use increases con-
stantly [19] and is distributed over several disciplines
[13, 20].

3 Results and discussion

3.1 Data processing

In the continuous baseline updating approach, complex
feature extraction methods SVD [8] and RR of recur-
rence quantification analysis are compared to MaxSig-
nal, using temperature-dependent GUW data from [8].
These three selected signal features are independent of
each other.

Figure 2 a sketches the experimental setup. Six piezo-
electric transducers (T1–T12) were each mounted on
two opposite sides of a CFRP plate. The individual
actuator-sensor pairs were measured in a round-robin
test with the pitch-catch method with excitation sig-
nals of a 5-cycle Hann-filtered sine wave amplified to ±
100 V. Experiments were conducted by cyclically tem-
perature variation in the range of 20–60 °C in 0.5 °C
steps and relative humidity of 50%. At each tempera-
ture step and actuator-sensor path, the excitation fre-
quency range was 40–260 kHz in 20 kHz steps. An alu-
minum disk mounted on the surface with tacky tape
simulated damage (positions D04 and D24). Measure-
ments were performed at two temperature cycles in the
damage-free case and one in the damaged case with a
10 MHz sampling frequency and 13,108 data points for
each signal.

For analyses, we apply continuous baseline updating
to data sets from 0.3 to 1.3 ms (10,000 data points) at
40 kHz and temperature changes of 5 °C as depicted
in Fig. 2a with reversible damage D04 and D24 in the
actuator-sensor path T6–T12 (D04) and T1–T7 (D24).
Compared to the scenario described in [8] with a tem-
perature change of 0.5 °C between updated data sets,
the temperature step of 5 °C in this work represents
an enormous change and challenge to the continuous
baseline updating approach and the different feature
extraction methods. With this data selection, we use
similar transducer paths to view the position depen-
dence of damage. The challenge is to reliably distin-
guish between temperature- and damage-induced sig-
nal changes (Fig. 2b, c). At first glance, the reversible
damage causes a significant amplitude attenuation of
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Fig. 2 a Schematic
representation of the
experimental conditions
used. The actuator-sensor
paths T6 to T12 and T1 to
T7 are analyzed for the
reversible damage D04 and
D24, respectively. Effect of
b temperature and
c damage on wave
propagation

(a) (b)

(c)

the maxima amplitudes at 0.45 ms. Thus, it is reason-
able to assume that feature extraction methods that
depend on the global maximum are sensitive to dam-
age insertions.

3.2 Analysis of the signal discrepancy data

Simple feature MaxSignal, as well as more complex fea-
tures such as SVD and RR are used to calculate the SD
in continuous baseline updating. For RR out of RQA,
we have determined the parameters in a data-driven
approach and a training/test manner: parameters are
varied in a wide range; the parameters leading to the
highest difference in RR values of ultrasonic signals
determined at no defects on the one hand and defects,
on the other hand, were chosen. The best parameters
obtained at defect D04, transducer path T6 → T12, are
used for computation of recurrence rates at defect D24
(transducer path T1 → T7), and vice versa (see Table
1).

Figure 3 illustrates an example of the SD profiles of
MaxSignal, SVD, and RR. Damage D04 was introduced

Table 1 RQA parameters

Parameter Used for evaluation
of signals of D4, T6
→ T12
Determined on
D24, T1 → T7

Used for
evaluation of
signals of D24,
T1 → T7
Determined on
D4, T6 → T12

Embedding
dimension d

2 3

Delay τ 70 90

Recurrence
threshold ε

0.1 0.1

at a temperature change from 21 to 26 °C (a–c) and D24
from 51 to 46 °C (d–f). For D04, a clear, sharp separa-
tion between the undamaged (SD values below 5%) and
the damaged case (SD values above 10%) characterizes
the three methods. However, SD values differ hugely
between methods, e.g., for MaxSignal, undamaged val-
ues are below 5%, and damaged ones are in the range of
30–50% in contrast to RR with up to 1% and 10–15%.
The situation differs for D24; for example, the SD val-
ues of MaxSignal for signals without damage increase
up to 10%, with defect SD values as low as 15% occur.
For SVD and D24, the SD values of the last three sig-
nals are close to the highest of the undamaged ones.
That indicates the limit of the method.

To compare the methods with each other quanti-
tatively, the next step is to normalize. Q (Eq. 2) is
already a normalized quantity. The maximal SD differ-
ence between adjacent measurements i and (i − 1) in
the undamaged region (Fig. 1) normalizes R (Eq. 3) to:

Rn =
SD3 − SD2

max|SDi − SDi−1| . (7)

When considering the distinction between signal
changes caused by temperature effects and damage,
there are two cases:

Q =

{
≤ 1; damage indistinguishably from temperature effect

else; damage distinguishably from temperature effect
,

(8)

Rn =

{
≤ 1; damage indistinguishably from temperature effect

else; damage distinguishably from temperature effect
.

(9)
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(a) (b) (c)

(d) (e) (f)

Fig. 3 Quantification of methods MaxSignal (a, d), SVD (b, e), and RR RQA (c, f) by introducing Q and R (Eqs. 2 and
3). a–c Depict the curves for the insertion D04 at 26 °C ascending and d–f show D24 at 46 °C descending temperature.
R describes the absolute change in signal discrepancy at the transition from undamaged to damaged. Q characterizes the
ratio between the maximum SD before and the first SD after damage insertion

If an SD value (Q) or difference (Rn) of the damaged
data is at most as large as the maximum of the undam-
aged set, the damage cannot be distinguished and
detected in the continuous baseline update approach.

Figure 4 plots the Q and Rn values for D04 and D24.
Additionally drawn as the area marked in gray and
white are the distinctions. On the one hand, the val-
ues of Q and Rn for all three methods for D04 (Fig. 4a,
c) are noticeably higher than for D24 (Fig. 4b, d). On
the other hand, SVD and MaxSignal provide compara-
ble results, while RR outperforms Q for D04 and Rn

for D24 (Fig. 4a, d). At D24 and 51–46 °C, the Rn val-
ues of SVD and MaxSignal are even on the border of
indistinguishability. The RR has, in contrast, the value
7. The position dependence of the reversible damage
can explain the differences between D04 and D24 with
similar actuator-sensor paths. While D04 is close to
the actuator, D24 is close to the sensor. The reversible
damage causes attenuation of the multimode GUWs.
Since the amplitude attenuation is proportional to the
square root of the propagation distance, an enlarged
distance between damage and sensor results in higher
signal deviations and the observable differences between
D04 and D24. The strong amplitude attenuation in
Fig. 2b and Q and Rn values for MaxSignal based on
amplitude attenuation support the explanation. Simi-
lar results from MaxSignal and SVD also support the
assumption of amplitude attenuation as the main signal
change since SVD calculates one characterizing value
per sensor signal, i.e., the dominant signal change fac-
tors reflected in the singular value. MaxSignal is limited

to damage classes characterized by maximum ampli-
tude changes. On the other hand, SVD also includes
changes in signal shape, e.g., due to interaction with
scattered partial waves. The performance of recurrence
quantification analysis with the feature recurrence rate
is connected to the signal height as well, as recurrence
rates go up for signals with smaller amplitude measured
at the damage. RQA however apparently picks up the
effects in a more comprehensive way than the two sim-
pler features MaxSignal and SVD. The better perfor-
mance of RQA results from a higher sensitivity of RR
to lower signal changes than SVD. An explanation may
be the determination of parameters in a data-driven
approach and a training manner using similar actor-
sensor pairs.

A further RQA-based approach to this application
can be found in [9], including more details on the pro-
cess of training, i.e., parameter determination, which is
in principle equal to the one described here.

4 Conclusion

The separation of temperature- and damage-induced
signal changes was investigated within the continu-
ous baseline update approach using publicly available
guided ultrasonic wave data with reversible damage and
varying temperatures. Recurrence quantification analy-
sis, singular value decomposition, and maximum ampli-
tude were used for feature extraction. For quantitative
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Fig. 4 Method comparison
for damage detection of D04
(a, c) and D24 (b, d): using
Q (Eq. 2) (a, b) and Rn

(Eq. 7) (c, d). For Q ≤ 1 or
Rn ≤ 1, respectively, a
method cannot distinguish
between the undamaged
and damaged case (gray
area) due to the
temperature-induced
feature changes

(a) (b)

(c) (d)

comparison of the different approaches, two parameters,
based on the change in signal discrepancy, were intro-
duced. Damage at two different positions causes signal
attenuation. Damage detection is better for the dam-
age placed closer to the actuator. The feature extrac-
tion methods maximum amplitude and singular value
decomposition provided comparable results. The recur-
rence rate allowed for better damage detection: it pro-
vided reliable results even under challenging conditions
to detect damage. We showed that continuous base-
line works on simple plate structures for relatively high-
temperature steps of 5 °C.
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