Skip to main content
Log in

Recent advances in the development of ultrafast electronic circular dichroism for probing the conformational dynamics of biomolecules in solution

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

A Correction to this article was published on 06 February 2023

This article has been updated

Abstract

Conformational dynamics of biomolecules, which can span very large time scales ranging from seconds down to femtoseconds, play a key role in their function. In this regard, the combination of the high temporal resolution of ultrafast pump–probe spectroscopy and the structural sensitivity of electronic circular dichroism (CD) spectroscopy provides an extremely promising tool to follow these dynamics with a "virtually" unlimited temporal resolution. However, although CD spectroscopy is a widely used tool in structural biology to determine the secondary structure of biomolecules in solution, transposition of these measurements to the time domain (TRCD), on the sub-picosecond time scale, remains very challenging due to their weak signals prone to pump-induced polarization artifacts. Recent advances in laser technologies and non-linear optics, however, offer new perspectives for the development of femtosecond TRCD set-ups. In this review, we present recent developments in ultrafast TRCD spectroscopy. We discuss the advantages and drawbacks of the few existing functional experimental set-ups for their use to access the conformational dynamics of biomolecules at ultrashort time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Adapted from X. Xie, J. D. Simon, Rev. Sci. Instrum. 60, 2614 (1989) with the permission of AIP Publishing

Fig. 5

Reproduced from E. Chen, R. A. Goldbeck, D. S. Kliger, Methods 52, 3 (2010) with the permission of Elsevier

Fig. 6

Reproduced from Trifonov A., Buchvarov I., Lorh A., Würthner F., Fiebig T. Rev. Sci. Instrum. 81, 043,104 (2010) with the permission of AIP Publishing

Fig. 7

Reproduced with permission from Oppermann M., Bauer B., Rossi T., Zinna F., Helbing J., Lacour J., Chergui M. Optica 6, 56 (2019), https://doi.org/10.1364/OPTICA.6.000056 © The Optical Society

Fig. 8
Fig. 9

Reproduced with permission from Hache F., Niezborala C., J. Opt. Soc. Am. 23, 2418 (2006), https://doi.org/10.1364/JOSAB.23.002418 © The Optical Society

Fig. 10

Copyright 2013 American Chemical Society

Fig. 11

Reproduced from H. Rhee, J. S. Choi, D. J. Starling, J. C. Howelld, M. Cho, Chem. Sci., 4, 4107 (2013) with permission from the Royal Society of Chemistry

Fig. 12

Reproduced from H. Rhee, J. S. Choi, D. J. Starling, J. C. Howelld, M. Cho, Chem. Sci., 4, 4107 (2013) with permission from the Royal Society of Chemistry

Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

No data associated in the manuscript.

Change history

References

  1. M. Maiuri, M. Garavelli, G. Cerullo, J. Am. Chem. Soc. 142(1), 3 (2020)

    Google Scholar 

  2. C. Fang, L. Tang, Annu. Rev. Phys. Chem. 71, 239 (2020)

    ADS  Google Scholar 

  3. J. Cao, R.J. Cogdell, D.F. Coker, H.-G. Duan, J. Hauer, U. Kleinekathöfer, T.L.C. Jansen, T. Mančal, R.J.D. Miller, J.P. Ogilvie, V.I. Prokhorenko, T. Renger, H.-S. Tan, R. Tempelaar, M. Thorwart, E. Thyrhaug, S. Westenhoff, D. Zigmantas, Sci. Adv. 6, 4888 (2020)

    ADS  Google Scholar 

  4. S. Biswas, J.W. Kim, X. Zhang, G.D. Scholes, Chem. Rev. 122(3), 4257 (2022)

    Google Scholar 

  5. J. Bredenbeck, J. Helbing, C. Kolano, P. Hamm, ChemPhysChem 8, 1747 (2007)

    Google Scholar 

  6. N.T. Hunt, Chem. Soc. Rev. 38, 1837 (2009)

    Google Scholar 

  7. P. Hamm, M. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  8. M.K. Petti, J.P. Lomont, M. Maj, M.T. Zanni, J. Phys. Chem. B 122, 1771 (2018)

    Google Scholar 

  9. H. Kim, M. Cho, Chem. Rev. 113, 5817 (2013)

    Google Scholar 

  10. P. Kukura, D.W. McCamant, R.A. Mathies, Annu. Rev. Phys. Chem. 58, 461 (2007)

    ADS  Google Scholar 

  11. D. Buhrke, P. Hildebrandt, Chem. Rev. 120(7), 3577 (2020)

    Google Scholar 

  12. H. Kuramochi, T. Tahara, J. Am. Chem. Soc. 143(26), 9699 (2021)

    Google Scholar 

  13. G. Branden, R. Neutze, Science 373, 954 (2021)

    Google Scholar 

  14. N. Berova, K. Nakanishi, and R. W. Woody, Circular Dichroism. Principles and Applications., Second Edition ed. (2000).

  15. G.D. Fasman, Circular Dichroism and the Conformational Analysis of Biomolecules (Springer, New York, 2010)

    Google Scholar 

  16. S.C. Björling, R.A. Goldbeck, S.J. Milder, C.E. Randall, J.W. Lewis, D.S. Kliger, J. Phys. Chem. 95(12), 4685 (1991)

    Google Scholar 

  17. A. Steinbacher, H. Hildenbrand, S. Schott, J. Buback, M. Schmid, P. Nuernberger, T. Brixner, Opt. Express 25, 21735 (2017)

    ADS  Google Scholar 

  18. M. Oppermann, B. Bauer, T. Rossi, F. Zinna, J. Helbing, J. Lacour, M. Chergui, Optica 6, 56 (2019)

    ADS  Google Scholar 

  19. F. Hache, P. Changenet, Chirality 33, 747 (2021)

    Google Scholar 

  20. S. Ghosh, G. Herink, A. Perri, F. Preda, C. Manzoni, D. Polli, G. Cerullo, ACS Photonics 8, 2234 (2021)

    Google Scholar 

  21. L. Whitmore, B. Woollett, A.J. Miles, D.P. Klose, R.W. Janes, B.A. Wallace, Nucleic Acids Res. 39, D480 (2011)

    Google Scholar 

  22. P.M. Bayley, Prog. Biophys. Molec. Biol. 37(3), 149 (1981)

    Google Scholar 

  23. F.A. Ferrone, J.J. Hopfield, S.E. Schnatterly, Rev. Sci. Inst. 45, 1392 (1974)

    ADS  Google Scholar 

  24. M. Anson, S.R. Martin, P.M. Bayley, Rev. Sci. Inst. 48, 953 (1977)

    ADS  Google Scholar 

  25. E. Chen, R.A. Goldbeck, D.S. Kliger, Methods 52, 3 (2010)

    Google Scholar 

  26. T. Dartigalongue, F. Hache, J. Chem. Phys. 123, 184901 (2005)

    ADS  Google Scholar 

  27. T. Dartigalongue, F. Hache, Chem. Phys. Lett. 415, 313 (2005)

    ADS  Google Scholar 

  28. T. Dartigalongue, F. Hache, Chirality 18(4), 273 (2006)

    Google Scholar 

  29. T. Dartigalongue, C. Niezborala, F. Hache, Phys. Chem. Chem. Phys. 9, 1611 (2007)

    Google Scholar 

  30. K.E. Hage, S. Brickel, S. Hermelin, G. Gaulier, C. Schmidt, L. Bonacina, S.C. Keulen, S. Bhattacharyya, M. Chergui, P. Hamm, U. Rothlisberger, J.P. Wolf, M. Meuwly, Struct. Dyn. 4, 61507 (2017)

    Google Scholar 

  31. D.I.H. Holdaway, E. Collini, A. Olaya-Castro, J. Chem. Phys. 114, 194112 (2016)

    ADS  Google Scholar 

  32. J.G. Lees, B.A. Wallace, Spectroscopy 16, 121 (2002)

    Google Scholar 

  33. A.F. Drake, J. Phys. E: Sci. Instrum. 19, 170 (1986)

    ADS  Google Scholar 

  34. X. Xie, J.D. Simon, J. Opt. Soc. Am. B 7(8), 1673 (1990)

    ADS  Google Scholar 

  35. B. Dutta, J. Helbing, Opt. Express 23, 16449 (2015)

    ADS  Google Scholar 

  36. X. Xie, J.D. Simon, Rev. Sci. Inst. 60, 2614 (1989)

    ADS  Google Scholar 

  37. C.M. Einterz, J.W. Lewis, S.J. Milder, D.S. Kliger, J. Phys. Chem. 89(18), 3845 (1985)

    Google Scholar 

  38. D.S. Kliger, J.W. Lewis, Rev. Chem. Intermed. 8(4), 367 (1987)

    Google Scholar 

  39. Y.G. Thomas, I. Szundi, J.W. Lewis, D.S. Kliger, Biochemistry 48, 12283 (2009)

    Google Scholar 

  40. J.A. Clinger, E. Chen, D.S. Kliger, J. Phys. Chem. B 125, 202 (2021)

    Google Scholar 

  41. S.J. Milder, S.C. Bjorling, I.D. Kuntz, D.S. Kliger, Biophys. J. 53, 659 (1988)

    Google Scholar 

  42. E. Chen, D.S. Kliger, Inorg. Chim. Acta 242(1–2), 149 (1996)

    Google Scholar 

  43. S.C. Bjorling, R.A. Goldbeck, S.J. Paquette, S.J. Milder, D.S. Kliger, Biochemistry 35, 8619 (1996)

    Google Scholar 

  44. E. Chen, V.N. Lapko, P.-S. Song, D.S. Kliger, Biochemistry 36, 4903 (1997)

    Google Scholar 

  45. M.-T. Khuc, L. Mendonça, S. Sharma, X. Solinas, M. Volk, F. Hache, Rev. Sci. Inst. 82, 054302 (2011)

    ADS  Google Scholar 

  46. L. Mendonça, A. Steinbacher, R. Bouganne, F. Hache, J. Phys. Chem. B 118, 5350 (2014)

    Google Scholar 

  47. K. Laouer, M. Schmid, F. Wien, P. Changenet, F. Hache, J. Phys. Chem. B 125, 8088 (2021)

    Google Scholar 

  48. H. Rhee, J.S. Choi, D.J. Starling, J.C. Howelld, M. Cho, Chem. Sci. 4, 4107 (2013)

    Google Scholar 

  49. C. Niezborala, F. Hache, J. Opt. Soc. Am. B 23, 2418 (2006)

    ADS  Google Scholar 

  50. A. Trifonov, I. Buchvarov, A. Lohr, F. Würthhner, T. Fiebig, Rev. Sci. Instrum. 81, 043104 (2010)

    ADS  Google Scholar 

  51. J. Meyer-Ilse, D. Akimov, B. Dietzek, J. Phys. Chem. Lett. 3, 182 (2012)

    Google Scholar 

  52. L. Mangot, G. Taupier, M. Romeo, A. Boeglin, O. Cregut, K.D. Dorkenoo, Opt. Lett. 35, 381 (2010)

    ADS  Google Scholar 

  53. K. Hiramatsu, T. Nagata, J. Chem. Phys. 143, 121102 (2015)

    ADS  Google Scholar 

  54. M. Scholz, M. Morgenroth, M.J. Cho, D.H. Choi, K. Oum, T. Lenzer, J Phys Chem. Lett. 10, 5160 (2019)

    Google Scholar 

  55. M. Morgenroth, M. Scholz, T. Lenzer, K. Oum, J. Phys. Chem. C 124, 10192 (2020)

    Google Scholar 

  56. M. Morgenroth, M. Scholz, M.J. Cho, D.H. Choi, K. Oum, T. Lenzer, Nat. Com. 13, 210 (2022)

    ADS  Google Scholar 

  57. M. Oppermann, J. Spekowius, B. Bauer, R. Pfister, M. Chergui, J. Helbing, J. Phys. Chem. Lett. 10, 2700 (2019)

    Google Scholar 

  58. F. Hache, M. Khuc, J. Brazard, P. Plaza, M. Martin, G. Checcucci, F. Lenci, Chem. Phys. Lett. 483, 133 (2009)

    ADS  Google Scholar 

  59. L. Mendonca, F. Hache, P. Changenet-Barret, P. Plaza, H. Chosrowjan, S. Taniguchi, Y. Imamoto, J. Am. Chem. Soc. 135, 14637 (2013)

    Google Scholar 

  60. C. Niezborala, F. Hache, J. Am. Chem. Soc. 130(38), 12783 (2008)

    Google Scholar 

  61. C. Niezborala, F. Hache, J. Phys. Chem. A 111(32), 7732 (2007)

    Google Scholar 

  62. M. Schmid, L. Martinez-Fernandez, D. Markovitsi, F. Santoro, F. Hache, R. Improta, P. Changenet, J. Phys. Chem. Lett. 10, 4089 (2019)

    Google Scholar 

  63. M. Lorenc, M. Ziolek, R. Naskrecki, J. Karolczak, J. Kubicki, A. Maciejewski, Appl. Phys. B 74, 19 (2002)

    ADS  Google Scholar 

  64. S. Schott, A. Steinbacher, J. Buback, P. Nuernberger, T. Brixner, J. Phys. B: At. Mol. Opt. Phys. 47, 124014 (2014)

    ADS  Google Scholar 

  65. M. Cho, J. Chem. Phys. 119(14), 7003 (2003)

    ADS  Google Scholar 

  66. I. Eom, S.-H. Ahn, H. Rhee, M. Cho, Phys. Rev. Lett. 108, 103901 (2012)

    ADS  Google Scholar 

  67. L. Lepetit, G. Cheriaux, M. Joffre, J. Opt. Soc. Am. B 12, 2467 (1995)

    ADS  Google Scholar 

  68. S. Biswas, J.W. Kim, X. Zhang, G.D. Scholes, Chem. Rev. 122, 4257 (2022)

    Google Scholar 

  69. F. Preda, A. Perri, J. Réhaut, B. Dutta, J. Helbing, G. Cerullo, D. Polli, Opt. Lett. 43(8), 1882 (2018)

    ADS  Google Scholar 

  70. I. Eom, S.-H. Ahn, H. Rhee, M. Cho, Opt. Express 19(10), 10017 (2011)

    ADS  Google Scholar 

  71. J.-Y. Lee, D.-C. Su, Opt. Comm. 256, 337 (2005)

    ADS  Google Scholar 

  72. A. Steinbacher, J. Buback, P. Nuernberger, T. Brixner, Opt. Express 20(11), 11838 (2012)

    ADS  Google Scholar 

  73. D.I.H. Holdaway, E. Collini, A. Olaya-Castro, Opt. Express 25, 6383 (2017)

    ADS  Google Scholar 

  74. N. Mann, P. Nalbach, S. Mukamel, M. Thorwart, J. Chem. Phys. 141, 234305 (2014)

    ADS  Google Scholar 

  75. A.F. Fidler, V.P. Singh, P.D. Long, P.D. Dahlberg, G.S. Engel, Nat. Commun. 5, 3286 (2014)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors thank F. Wien from DISCO beamline at Synchrotron Soleil for his assistance for the SRCD measurement of G-quadruplexes (proposals 20170318 and 20201655).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascale Changenet.

Additional information

The original online version of this article was revised due to some minor errors in the equations 2, 15, 16 and 17.

Ultrafast Phenomena from attosecond to picosecond timescales: theory and experiments. Guest editors: Franck Lépine, Lionel Poisson.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Changenet, P., Hache, F. Recent advances in the development of ultrafast electronic circular dichroism for probing the conformational dynamics of biomolecules in solution. Eur. Phys. J. Spec. Top. 232, 2117–2129 (2023). https://doi.org/10.1140/epjs/s11734-022-00679-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00679-3

Navigation