Skip to main content
Log in

Spin effects in ultrafast laser-plasma interactions

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

This article has been updated

Abstract

Ultrafast laser pulses interacting with plasmas can give rise to a rich spectrum of physical phenomena, which have been extensively studied both theoretically and experimentally. Less work has been devoted to the study of polarized plasmas, where the electron spin may play an important role. In this short review, we illustrate the use of phase-space methods to model and simulate spin-polarized plasmas. This approach is based on the Wigner representation of quantum mechanics, and its classical counterpart, the Vlasov equation, which are generalized to include the spin degrees of freedom. Our approach is illustrated through the study of the stimulated Raman scattering of a circularly polarized electromagnetic wave interacting with a dense electron plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 27 September 2023

    The equation format was changed for better presentation.

Notes

  1. For a fully quantum plasma, described by a Fermi-Dirac distribution, the velocity dispersion does not vanish even at zero temperature, but would rather be determined by the Fermi velocity. In that case, the present transverse model should be modified.

References

  1. C. Voisin, D. Christofilos, N. Del Fatti, F. Vallée, B. Prével, E. Cottancin, J. Lermé, M. Pellarin, M. Broyer, Phys. Rev. Lett. 85, 2200 (2000). https://doi.org/10.1103/PhysRevLett.85.2200. (ISSN 0031-9007)

    Article  ADS  Google Scholar 

  2. J.-Y. Bigot, V. Halté, J.-C. Merle, A. Daunois, Chem. Phys. 251, 181 (2000)

    Article  Google Scholar 

  3. O. Salata, J. Nanobiotechnol. 2, 3 (2004), ISSN 1477-3155, http://www.ncbi.nlm.nih.gov/pubmed/15119954

  4. L. Loomba, T. Scarabelli, Therapeutic Delivery 4, 1179 (2013), ISSN 2041-5990, http://www.ncbi.nlm.nih.gov/pubmed/24024515https://doi.org/10.4155/tde.13.74

  5. J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, P.-F. Brevet, Nano Lett. 10, 1717 (2010). https://doi.org/10.1021/nl1000949

    Article  ADS  Google Scholar 

  6. H. Singhal, R. A. Ganeev, P. A. Naik, A. K. Srivastava, A. Singh, R. Chari, R. A. Khan, J. A. Chakera, P. D. Gupta, J. Phys. B: Atom. Mol. Opt. Phys. 43, 025603 (2010), ISSN 0953-4075, http://stacks.iop.org/0953-4075/43/i=2/a=025603?key=crossref.49a4d77b18731634172632dc777fb0db

  7. J. Hurst, O. Morandi, G. Manfredi, P.-A. Hervieux, Eur. Phys. J. D 68, 176 (2014). arXiv:1405.1184

    Article  ADS  Google Scholar 

  8. V.T. Tikhonchuk, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 378, 20200013 (2020). https://doi.org/10.1098/rsta.2020.0013

    Article  ADS  Google Scholar 

  9. V. Malka, Phys. Plasmas 19, 055501 (2012). https://doi.org/10.1063/1.3695389

    Article  ADS  Google Scholar 

  10. T. Tajima, V. Malka, Plasma Phys. Controlled Fusion 62, 034004 (2020). https://doi.org/10.1088/1361-6587/ab6da4

    Article  ADS  Google Scholar 

  11. D. Forslund, J. Kindel, E. Lindman, Phys. Fluid 18, 1002 (1975)

    Article  ADS  Google Scholar 

  12. C.J. Walsh, D.M. Villeneuve, H.A. Baldis, Phys. Rev. Lett. 53, 1445 (1984). https://doi.org/10.1103/PhysRevLett.53.1445

    Article  ADS  Google Scholar 

  13. A. Modena, Z. Najmudin, A. Dangor, C. Clayton, K. Marsh, C. Joshi, V. Malka, C. Darrow, C. Danson, D. Neely et al., Nature 377, 606 (1995)

    Article  ADS  Google Scholar 

  14. A. Alekhin, I. Razdolski, N. Ilin, J.P. Meyburg, D. Diesing, V. Roddatis, I. Rungger, M. Stamenova, S. Sanvito, U. Bovensiepen et al., Phys. Rev. Lett. 119, 017202 (2017)

    Article  ADS  Google Scholar 

  15. A. Hirohata, K. Yamada, Y. Nakatani, I.-L. Prejbeanu, B. Diény, P. Pirro, B. Hillebrands, J. Magn. Magn. Mater. 509, 166711 (2020)

    Article  Google Scholar 

  16. E. Beaurepaire, J.-C. Merle, A. Daunois, J.-Y. Bigot, Phys. Rev. Lett. 76, 4250 (1996). https://doi.org/10.1103/PhysRevLett.76.4250

    Article  ADS  Google Scholar 

  17. K. Krieger, J. Dewhurst, P. Elliott, S. Sharma, E. Gross, J. Chem. Theory Comput. 11, 4870 (2015)

    Article  Google Scholar 

  18. M. Stamenova, J. Simoni, S. Sanvito, Phys. Rev. B 94, 014423 (2016). https://doi.org/10.1103/PhysRevB.94.014423

    Article  ADS  Google Scholar 

  19. M. Battiato, K. Carva, P.M. Oppeneer, Phys. Rev. Lett. 105, 027203 (2010). https://doi.org/10.1103/PhysRevLett.105.027203. (ISSN 0031-9007)

    Article  ADS  Google Scholar 

  20. Y. Wu, L. Ji, X. Geng, Q. Yu, N. Wang, B. Feng, Z. Guo, W. Wang, C. Qin, X. Yan et al., New J. Phys. 11, 073052 (2019)

    Article  Google Scholar 

  21. Y. Wu, L. Ji, X. Geng, J. Thomas, M. Büscher, A. Pukhov, A. Hützen, L. Zhang, B. Shen, R. Li, Phys. Rev. Appl. 13, 044064 (2020)

    Article  ADS  Google Scholar 

  22. Z. Nie, F. Li, F. Morales, S. Patchkovskii, O. Smirnova, W. An, N. Nambu, D. Matteo, K.A. Marsh, F. Tsung et al., Phys. Rev. Lett. 126, 054801 (2021)

    Article  ADS  Google Scholar 

  23. S.C. Cowley, R.M. Kulsrud, E. Valeo, Phys. Fluids 29, 430 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  24. J. Hurst, P.-A. Hervieux, G. Manfredi, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 375, 20160199 (2017). https://doi.org/10.1098/rsta.2016.0199

    Article  ADS  Google Scholar 

  25. J. Zamanian, M. Marklund, G. Brodin, New J. Phys. 12, 043019 (2010a), http://stacks.iop.org/1367-2630/12/i=4/a=043019?key=crossref.153368f55cfe1c0f5f8e618f46552dfd

  26. J. Zamanian, M. Stefan, M. Marklund, G. Brodin, Phys. Plasmas 17, 102109 (2010b), http://scitation.aip.org/content/aip/journal/pop/17/10/10.1063/1.3496053

  27. O. Morandi, J. Zamanian, G. Manfredi, P.-A. Hervieux, Phys. Rev. E 90, 013103 (2014), https://doi.org/10.1103/PhysRevE.90.013103

  28. G. Brodin, A. Holkundkar, M. Marklund, J. Plasma Phys. 79, 377 (2013)

    Article  ADS  Google Scholar 

  29. F. Li, V.K. Decyk, K.G. Miller, A. Tableman, F.S. Tsung, M. Vranic, R.A. Fonseca, W.B. Mori, J. Comput. Phys. 438, 110367 (2021). (ISSN 0021-9991)

    Article  Google Scholar 

  30. R. Sinha-Roy, J. Hurst, G. Manfredi, P.-A. Hervieux, ACS Photonics 7, 2429 (2020). https://doi.org/10.1021/acsphotonics.0c00462

    Article  Google Scholar 

  31. Y. Yin, P.-A. Hervieux, R.A. Jalabert, G. Manfredi, E. Maurat, D. Weinmann, Phys. Rev. B 80, 115416 (2009). https://doi.org/10.1103/PhysRevB.80.115416. (ISSN 1098-0121)

    Article  ADS  Google Scholar 

  32. G. Manfredi, P.-A. Hervieux, Y. Yin, N. Crouseilles, Collective Electron Dynamics in Metallic and Semiconductor Nanostructures (Springer Berlin Heidelberg, Berlin, Heidelberg, 2010), pp. 1–44, ISBN 978-3-642-04650-6, https://doi.org/10.1007/978-3-642-04650-6_1

  33. G. Manfredi, P.-A. Hervieux, J. Hurst, Rev. Modern Plasma Phys. 3, 1 (2019)

    Article  Google Scholar 

  34. A. Arnold, H. Steinrück, ZAMP Zeitschrift für angewandte Mathematik und Physik 40, 793 (1989). https://doi.org/10.1007/BF00945803

    Article  ADS  Google Scholar 

  35. O. Morandi, F. Schürrer, J. Phys. A: Math. Theor. 44, 265301 (2011), http://stacks.iop.org/1751-8121/44/i=26/a=265301?key=crossref.9c38a6baa4753b3171f66c02867efa02

  36. J. Hurst, P.-A. Hervieux, G. Manfredi, Phys. Rev. B 97, 014424 (2018). https://doi.org/10.1103/PhysRevB.97.014424

    Article  ADS  Google Scholar 

  37. M. Marklund, J. Zamanian, G. Brodin, Transport Theory Stat. Phys. 39, 502 (2010). https://doi.org/10.1080/00411450.2011.566502

    Article  ADS  Google Scholar 

  38. G. Brodin, M. Marklund, J. Zamanian, M. Stefan, Plasma Physics and Controlled Fusion 53, 074013 (2011), http://stacks.iop.org/0741-3335/53/i=7/a=074013?key=crossref.6598251ca96ba298ee582aad4c09a7ec

  39. G. Brodin, M. Marklund, J. Zamanian, S. Ericsson, P.L. Mana, Phys. Rev. Lett. 101, 245002 (2008)

    Article  ADS  Google Scholar 

  40. P.A. Andreev, L.S. Kuz’menkov, Phys. Plasmas 24, 112108 (2017). https://doi.org/10.1063/1.4999103

    Article  ADS  Google Scholar 

  41. A. Ghizzo, P. Bertrand, M. Shoucri, T. Johnston, E. Fijalkow, M. Feix, J. Comput. Phys. 90, 431 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  42. M. Shahid, Z. Iqbal, M. Jamil, G. Murtaza, Phys. Plasmas 24, 102113 (2017). https://doi.org/10.1063/1.4986010

    Article  ADS  Google Scholar 

  43. N. Crouseilles, P.-A. Hervieux, Y. Li, G. Manfredi, Y. Sun, J. Plasma Phys. 87, 825870301 (2021)

    Article  Google Scholar 

  44. G. Manfredi, P.-A. Hervieux, J. Hurst, Rev. Modern Plasma Phys. 5, 1 (2021)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Manfredi.

Additional information

Communicated by Guest editors: Franck Lépine, Lionel Poisson.

Ultrafast Phenomena from attosecond to picosecond timescales: theory and experiments.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manfredi, G., Hervieux, PA. & Crouseilles, N. Spin effects in ultrafast laser-plasma interactions. Eur. Phys. J. Spec. Top. 232, 2277–2283 (2023). https://doi.org/10.1140/epjs/s11734-022-00669-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00669-5

Navigation