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Abstract Due to the severity of COVID-19, vaccination campaigns have been or are underway in most parts
of the world. In the current circumstances, it is obligatory to examine the response of vaccination on trans-
mission of the SARS-CoV-2 virus when there are many vaccines available. Considering the importance of
vaccination, a dynamic model has been proposed to provide an insight in the same direction. A mathemat-
ical model has been developed where six population compartments viz. susceptible, infected, vaccinated,
home-isolated, hospitalized and recovered population are considered. Moreover, two novel parameters are
included in the model to ascertain the effectiveness and speed of the vaccination campaign. Reproduction
number and local stability of both the disease-free and endemic equilibrium points are studied to examine
the nature of population dynamics. Graphical results for the community stage of COVID-19 infection are
simulated and compared with real data to ascertain the validity of our model. The data is then studied to
understand the impact of vaccination. These numerical results evidently demonstrate that home isolation
and hospitalization should continue for the infected people until the transmission of the virus from person
to person reduces sufficiently after completely vaccinating every nation. This model also recommends that
all type of prevention measures should still be taken to avoid any type of critical situation due to infection
and also reduce the death rate.

1 Introduction

Infectious diseases have always been major concerns
from the ancient times from the first pandemic that
started in 165 A.D. called as the Plague of Galen. Since
that time many epidemics are mentioned in the lit-
erature. The current pandemic has come from coron-
avirus infection. The first human corona virus, B814,
was found in 1965 from an adult who had been reported
for having common cold [1]. At the beginning of this
century, Severe Acute Respiratory Syndrome (SARS),
from the family of human corona virus, was first recog-
nized in Hanoi, Vietnam from a middle-aged business-
man who travelled extensively in South-East Asia. He
was admitted to a hospital in Hanoi on 26 February
2003 with high fever, dry cough, muscle pain and mild
sore throat [2]. The incubation period for SARS is nor-
mally 2–7 days and symptoms are likely to be produced
during this period. The common symptoms include
mild respiratory symptoms, and fever. Sometimes it
is associated with chills, rigors, and other symptoms
like headache, malaise, and muscle pain. During these
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days, the outbreak of SARS-CoV had affected people
in a large scale with 8000 cases and approximately
800 deaths as reported in [1, 3, 4]. Similarly, Mid-
dle East Respiratory Syndrome coronavirus or MERS-
CoV (MERS) is a viral respiratory disease caused by a
human corona virus. It was first reported in Saudi Ara-
bia in the year 2012. The virus was found to be capable
of transmitting from some animals to human beings
through a carrier or fluid medium. During that time,
people were infected through direct contact or indi-
rect contact with infected people/animals. The source
of the virus is still not fully known but it is expected
to originate from bats and transmitted to camels [4].
The clinical symptoms were mild respiratory symp-
toms, severe acute respiratory disease and death. There
was also a portion of asymptomatic individuals. Some
common symptoms included fever, cough and shortness
of breath, sometimes pneumonia and gastrointestinal
problems like diarrhea. Approximately 2500 cases were
reported and 35.7% of the patients with MERS-COV
had died.

Recently, the COVID-19 outbreak was declared an
epidemic disease by the World Health Organization
on March 11, 2020. In a very short period of time,
almost every person is directly or indirectly affected by
it because of the virus’ potential of rapid transmission.
The virus was first reported in Wuhan City of China on
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November 17, 2019 [5–7]. In the beginning, it was sus-
pected as severe pneumonia but later it was identified
as the human corona virus. On February 11, 2020, the
Director-General of WHO announced that the disease
caused by this new coronavirus, SARS-CoV-2, was to
be officially named COVID-19 [5].

In the absence of proper treatment and vaccination
for a year, it has affected more than 215 millions of peo-
ple around the world and has caused 4.48 million deaths
world-wide. People of older age and certain underlying
medical problems like cardiovascular diseases, diabetes,
chronic respiratory disease and cancer are more vulner-
able to this disease [8–11]. It spreads from the infected
people through direct contacts such as spitting, sneez-
ing and coughing. The virus causes both upper and
lower respiratory tract infection in human body. So,
symptoms vary from one person to another. The life
span of COVID-19 infection is considered in five stages:
incubation period, time of testing, detection of symp-
toms, quarantine and recovery. The transmission of the
COVID-19 infections is normally increased by the high
infection rate, recombination rate and mutation rate.
According to various studies, mutation of the virus is
also happening which a cause of alarm [12, 13]. Due
to the onset of various strains/waves of the virus, such
as Alpha, beta, Gamma, Delta, and the most alarming,
Omicron [14], affect on human lives in terms of employ-
ment, economic stability, loss of lives has been dire.
There are good initiatives being taken by most nations
to curb the rate of infection. Country-wise vaccination
drives were started and are still going on; however com-
plete vaccination will require an ample amount of time
due to many reasons. To name a few, lack of awareness
in rural region and slow formulation and manufacturing
speed of vaccines due to the huge amount population of
the world. It is also observed that the vaccinated people
still remain susceptible to re-infection when contacted
with infected people after a certain amount of time. It
has been demonstrated that India has comparatively
less mortality rate but the rate of infection is a concern
[15]. Even after continuous lockdowns, it is still recom-
mended that we continue the precautionary measures
like wearing a face mask, sanitizing of hands, and main-
taining social distance to be safe. Till date, most coun-
tries are facing a chaotic and disastrous situation which
is predicted to continue in subsequent waves [16–18].

The disease is still the deadliest in the absence of
proper treatment and less vaccinated people. Many
researchers and scientists are giving efforts to provide
solutions, approaches and preventive measures to con-
trol the pandemic [19–21]. It is still an ongoing process
to find appropriate solutions for the health sector work-
ers. However, the mathematical model presented in this
paper can provide the predictions on various stages of
COVID-19. In this regards, various dynamical models
[22–31] have been presented and various recommenda-
tions on how the spread rate of infection could be less if
the infected persons are completely in isolation, reduc-
ing contact and increasing trace of infected persons may
reduce the transmission rate and how social distanc-
ing between potentially infected individuals and healthy

individuals can reduce the spread have been proposed.
Sufficient vitamins, tonics, supplements and medication
to stop spread in non-infected people and vaccine-effort
and social distancing parameters may control the trans-
mission of COVID. In many articles, the findings of the
dynamical models are validated with the clinical data
collected from various countries like China, Italy, India,
Saudi Arabia, Brazil, etc. The effects of antiviral [32]
in COVID-19 infection have also been presented and
its dynamical characterization has been done. Another
dynamical approach [33] for prioritization of vaccina-
tion has been investigated. The effects of BCG vaccine
[34] on the COVID-19 have also been reported and the
effects of anti-SARS-CoV-2 antibodies in infections and
recovery have been investigated by Ref. [35]. It was also
found by Ref. [36] that in case roll out of vaccines are
not upto speed, then permanent drug treatment should
be focused on. Some other interesting models ([37–40])
on vaccination and prioritization have been reported
in literature and it is concluded that vaccination is an
efficient tool to stop the spread of infections.

In literature, a mathematical model is a strong tool
which plays a major role in predicting the behaviour
of any infectious disease and its control [19, 41, 42].
Improvements and generalization of the models existing
in literature are always required to give better solutions
and predictions. Considering this fact, an improved
dynamical model to study the impacts of vaccinations
in the spread of COVID-19 is developed. The equilib-
rium points (both disease-free and endemic) is found
and non-negativity and invariant region of the solu-
tions is presented (Table 1). The reproduction number
and local stability analysis at equilibrium points for the
COVID-19 model are also studied. Numerical approach
with NDSolver in Mathematica is employed to compute
the simulations. Furthermore, the simulated results are
compared with an existing model for validation. It is
recommended that the speed of vaccination drive and
efficacy of vaccine should be increased to control the
pandemic situation and make the normal life.

2 Dynamical model for community
transmission

When a resident/citizen with no national/international
travel history spreads the virus in the community and
partial lockdown has been enforced by the government.
It becomes a situation when it is very difficult to con-
trol the infection and giving full freedom to force of the
security personals. If situation is not controlled at this
phase then it would become endemic stage where there
will be many deaths due to infection with this virus. To
develop the dynamical model, the following hypotheses
during community transmission of coronavirus are con-
sidered [6, 8, 10, 11, 42]:

H1: The natural birth and death rate of susceptible
population is positive i.e., B1 > 0 and μ > 0.

123



Eur. Phys. J. Spec. Top. (2022) 231:3749–3765 3751

Fig. 1 Flow diagram for
the proposed model

H2: The immunization rate is positive viz. rate at
which the number of susceptible population is
transferred to vaccination population i.e., a >
0.

H3: Uninfected home quarantine population rate is
positive viz. rate at which the number of people
from home quarantine is transferred to suscep-
tible population i.e., ε1 > 0.

H4: Infected home quarantine population rate is
positive viz. rate at which the number of people
from home quarantine is transferred to infected
population i.e., δ1 > 0.

H5: Contact rate of infection between susceptible
and infected people is positive i.e., β1 > 0.

H6: Quarantine rate is positive viz. rate at which the
number of people from susceptible populations
are transferred to home quarantine population
compartment i.e., λ1 > 0.

H7: Hospitalized rate is positive viz. rate at which
the number of infected people has shifted to
hospital i.e., η1 > 0.

H8: Recovered rate is positive viz. rate at which the
number of people recovered from infection i.e.,
γ1 > 0.

H9: COVID-19 death rate is positive viz. rate of
death induced by the disease i.e., μ1 > 0.

H10: The rate at which a vaccinated population is
transferred to susceptible population again due
to non-availability of antibodies in the vacci-
nated population i.e., b > 0, because, no vac-
cine is provides 100% protection from COVID-
19 infection.

A flow diagram for the spread of COVID-19 within
the human population is illustrated in Fig. 1. To express
this situation, a dynamical model based on the above
hypotheses is developed and expressed mathematically
as:

dS1

dt
= B1 − μS1 − λ1S1 − β1S1I1 − aS1 + bV1 − ε1Q1

dI1
dt

= β1S1I1 − (μ + μ1 + η1)I1 + δ1Q1

dV1

dt
= aS1 − bV1 − μV1

dQ1

dt
= −(μ + δ1)Q1 + λ1S1 − ε1Q1

dQ2

dt
= −(μ + μ1 + γ1)Q2 + η1I1

dR1

dt
= −μR1 + γ1Q2

(1)

subject to following the initial conditions,

S1(0) = S10, I1(0) = I10, V1(0) = V10,

Q1(0) = Q10, Q2(0) = Q20, R1(0) = R10.
(2)

The parametric values during the non-infected and
infected equilibrium points are listed in Table 2. The
non-negativity and invariant region for the proposed
model are discussed in the successive subsections where
the solutions will persist. For this model, the equilib-
rium points have been obtained by considering the rate
of change of the population to be zero.

2.1 Non-negativity of the solutions

Lemma 1 The analytical solution of model (1) i.e.,
S1(t), I1(t), V1(t), Q1(t), Q2(t), R1(t) with initial values
S1(0) > 0, I1(0) ≥ 0, V1(0) ≥ 0, Q1(0) ≥ 0, Q2(0) ≥ 0,
R1(0) ≥ 0 are non-negative for all t > 0.
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Table 1 Parameters definition

Symbol Definition

S1 Population of susceptible class

I1 Population of infected class

Q1 Population of home isolation class

Q2 Population quarantined in hospitals

R1 Population of recovered class

V1 Population of vaccinated class

B1 Birth rate

μ Natural death rate

μ1 Death rate due to COVID-19

λ1 Rate at which number of people are
shifted from susceptible class to
home quarantine class

β1 Rate of infection between susceptible
and infected population

δ1 Rate at which number of people are
transferred from home quarantine to
infected class after confirmation

ε1 Rate at which number of people is
transferred from home quarantine to
susceptible class

η1 Rate at which number of people is
transferred from infected class to
hospital quarantine class

γ1 Rate at which number of people are
getting recovered from infection

a Rate at which the susceptible
population is transferred to
vaccinated class

b Rate at which the vaccinated
population is transferred back to
susceptible class

R0 Basic reproduction number

Proof The first equation of the model (1), i.e., equation
(1a) can be written as,

d

dt

[
S1(t)exp

{∫ t

0

β1I1(x)dx + (μ + λ1 + a)t
}]

= [B1 + bV1(t) − ε1Q1(t)] exp{∫ t

0

β1I1(x)dx + (μ + λ1 + a)t
}

After simplifying the equation, we get

S1(t) = exp

{
−

∫ t

0

β1I1(x)dx − (μ + λ1 + a)t
}

×
[ ∫ t

0

(B1 + bV1(y) − ε1Q1(y))

Table 2 Parameter values

Parameter Non-infected Infected References

B1 0.04 0.04 [6]

μ 0.03 0.03 [6]

μ1 0.035 0.035 [6]

ε1 0.2 0.2 [6]

η1 0.12 0.12 [6]

γ1 0.02 0.02 [6]

β1 0.2 0.85 [6]

δ1 0.03 0.4 [6]

λ1 0.1 0.4 [6]

S10 0.88 0.88 [6]

I10 0.04 0.04 [6]

Q10 0.08 0.08 [6]

Q20 0 0 [6]

R10 0 0 [6]

V10 0.1 0.1 Estimated

a 0.001 0.1 Estimated

b 0.01 0.01 Estimated

R0 0.87607 1.12424 Evaluated

× exp

{∫ y

0

β1I1(x)dx + (μ1 + λ1 + a)y
}

dy

]

+ S1(0) exp

{
−

∫ y

0

β1I1(x)dx−(μ + λ1 + a)y
}

>0.

(3)

Subsequently, we can also prove that I1(0) ≥ 0, V1(0) ≥
0, Q1(0) ≥ 0, Q2(0) ≥ 0, R1(0) ≥ 0 (see [43, 44]). Thus,
the solutions S1(t), I1(t), V1(t), Q1(t), Q2(t), R1(t) stay
positive for all t > 0. �

2.2 Invariant region

Let us assume, N1(t) is the total sum of all compart-
ment populations, i.e.,

N1(t) = S1(t) + I1(t) + V1(t) + Q1(t) + Q2(t) + R1(t).

Then,

dN1

dt
= B1 − μN1 − μ1(I1 + Q2).

In the absence of COVID-19 infection,

dN1

dt
= B1 − μN1.

123



Eur. Phys. J. Spec. Top. (2022) 231:3749–3765 3753

Hence, the total population will bound to B1
μ at t → ∞.

Therefore, all solutions of this model will be finite and
exist in the following region [45]:

Λ =
{
(S1, I1, V1, Q1, Q2, R1) ∈ R+

6 : S1, I1, V1, Q1, Q2, R1

≤ B1

μ

}
(4)

2.3 Equilibrium points

It is well known that if the system is stable, it will be at
the equilibrium points. After doing the rigorous calcu-
lation for this model, we get the following equilibrium
points:

• Non-infected equilibrium point

E∗
1 = (S∗

1 , I∗
1 , V ∗

1 , Q∗
1, Q

∗
2, R

∗
1) = (1, 0, 0, 0, 0, 0)

(5)

• Infected equilibrium point

Ē1 =
(
S̄1, Ī1, V̄1, Q̄1, Q̄2, R̄1

)
(6)

where, S̄1 = B1(−b−μ)(−δ1−ε1−μ)
ε1λ1(−b−μ)+(−δ1−ε1−μ)(ab−(−b−μ)(−a−λ1−μ−β1 Ī1))

,

V̄1 = aS̄1
b+μ , Q̄1 = λ1S̄1

δ1+ε1+μ , Q̄2 = η1Ī1
γ1+μ+μ1

, R̄1 =
γ1η1Ī1

μ(γ1+μ+μ1)
.

3 Analysis of the COVID-19 model

For an epidemiological model, the basic reproduction
number denotes the number of secondary infections
caused by one infectious individual, it is calculated in
the next subsection. Then, we discuss whether the equi-
librium points for the proposed model are stable or
unstable.

3.1 Reproduction number

The system of Eq. (1) can be written in another form,

dX

dt
= P (X) − Q(X) (7)

where,

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

I1
V1

Q1

Q2

R1

S1

⎞
⎟⎟⎟⎟⎟⎟⎠

, P (X) =

⎛
⎜⎜⎜⎜⎜⎜⎝

β1I1S1

0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

and

Q(X) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−δ1Q1 + (η1 + μ + μ1)I1

−aS1 + bV1 + μV1

−λ1S1 + (η1 + μ + ε1)Q1

−η1I1 + (γ1 + μ + μ1)Q2

−γ1Q2 + μR1

−B1 + aS1 − bV1 + β1S1I1 − ε1Q1 + λ1S1 + μS1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Then, we calculate the Jacobian matrix for P(X ) and
Q(X ) at E∗

1 ,

m = J [P (X)]|E∗
1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

η1 + μ + μ1 0 − δ1 0 0 0

0 b + μ 0 0 0 − a

0 0 η1 + μ + ε1 0 0 − λ1

−η1 0 0 γ1 + μ + μ1 0 0

0 0 0 0 γ1 μ

β1 − b − ε1 0 0 a + λ1 + μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Similarly, we can calculate, n = J [Q(X)]|E∗
1
.

Finally, we deduce the basic reproduction number
after calculating the spectral radius, i.e., of R0 =
ρ(mn−1), we get

R0 =
β1Nr

bD1 + μD2
, (8)

where, Nr = (b(δ1(λ1 +μ)+μ(ε1 +λ1 +μ))+μ(a(δ1 +
ε1 + μ) + δ1(λ1 + μ) + μ(ε1 + λ1 + μ))),

D1 = (δ1β1λ1 + (δ1(λ1 + μ) + μ(ε1 + λ1 + μ))(η1 +
μ + μ1)),

D2 = (δ1β1λ1 +a(δ1 + ε1 +μ)(η1 +μ+μ1)+(δ1(λ1 +
μ) + μ(δ1 + ε1 + μ))(η1 + μ + μ1)).

3.2 Local stability at non-infected equilibrium point

Theorem 1 The non-infected equilibrium point of
model (1) is asymptotically stable if the reproduction
number is less than 1, i.e., R0 < 1, otherwise it is unsta-
ble.

Proof The Jacobian matrix for the present model at
non-infected equilibrium point (see [41, 43]) is
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J |E∗
1
=

⎛
⎜⎜⎜⎜⎜⎜⎝

−a − λ1 − μ − β1 b ε1 0 0
0 β1 − η1 − μ − μ1 0 δ1 0 0
a 0 − b − μ 0 0 0
λ1 0 0 −δ1 − ε1 − μ 0 0
0 η1 0 0 −γ1 − μ − μ1 0
0 0 0 0 γ1 − μ

⎞
⎟⎟⎟⎟⎟⎟⎠

�

After solving characteristic equation for the above
matrix, we directly get the following characteristic
roots:

p1 = − μ,

p2 = − γ − μ − μ1,

p3 = − δ1 − ε1 − μ

The other three characteristic roots can be derived
from the following equation

p3 + A1 p2 + A2 p + A3 = 0, (9)

where, A1 = b + η1 = λ1 + 3μ + μ1 − ε1λ1 − β1 + a,

A2 = a + bβ1 + bη1 + bλ1 − β1λ1 + η1λ1 + 2bμ

+ 2η1μ + 2λ1μ + 3μ2 + bμ2
1 + λ1μ1

+ 2μμ1 − β1λ1δ1 − bε1λ1 + β1ε1λ1 − η1ε1λ1

− 2ε1λ1μ − ε1λ1μ1

A3 = aμ − bβ1λ1 + bη1λ1 − bβ1μ + bη1μ + bλ1μ

− β1λ1μ + η1λ1μ + bμ2 + η1μ
2 + λ1μ

2 + μ3 + bλ1μ1

+ bμμ1 + λ1μμ1 + μ2μ1 + β1bλ1δ1 + bβ1ε1λ1

− bε1η1λ1 + β1δ1λ1μ − bε1δ1μ + β1ε1λ1μ − ε1λ1η1μ

− ε1λ1μ
2 − bε1λ1μ1 − ε1λ1μ1μ

Using Routh-Hurwitz Criterion [43], it is easy to exam-
ine that the real part of the characteristic roots are
negative, if R0 < 1. Hence, this equilibrium point is
local stable for this condition otherwise; it is unstable,
for the model (1).

3.3 Local stability at infected equilibrium point

Theorem 2 The infected equilibrium point, Ē1 =(
S̄1, Ī1, V̄1, Q̄1, Q̄2, R̄1

)
is locally asymptotically stable

if the reproduction number is greater than 1, i.e., R0 >
1.

Proof The Jacobian matrix at the infected equilibrium
point is formed as (see [44]):

J |Ē1
=

⎛
⎜⎜⎜⎜⎜⎜⎝

−a − Ī1β1 − λ1 − μ − S̄1β1 b ε1 0 0
Ī1β1 S̄1β1 − η1 − μ − μ1 0 δ1 0 0

a 0 − b − μ 0 0 0
λ1 0 0 − δ1 − ε1 − μ 0 0
0 η1 0 0 − γ1 − μ − μ1 0
0 0 0 0 0 − μ

⎞
⎟⎟⎟⎟⎟⎟⎠

�

After solving the characteristics equation of above
matrix, we get two characteristic roots,

p1 = − μ

p2 = − γ1 − μ − μ1.

And the other four eigenvalues can be derived from the
following equation,

λ1 × (b + p + μ) × (−S̄1β1(δ1 + ε1)
+ ε1(p + η1 + μ + μ1))+

(−p − δ1 − ε1 − μ) × (ab(p − S̄1β1 + η1 + μ + μ1)
× (−b − p − μ)

(Ī1S̄1β
2
1 + (a + p + Ī1β1 + λ1 + μ) × (p − S̄1β1 + η1

+ μ + μ1))) = 0

Similarly, we can report the local stability for the cur-
rent model at the infected or epidemic equilibrium point
using the Routh-Hurwitz criterion. It is derived that
real parts of all the eigenvalues are negative and real
when the reproduction number is greater than 1, so, it
is asymptotically stable.
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4 Sensitivity analysis

This model is constructed with consideration of some
key parameters which possess close similarity to the
actual disease. In this section, we analyze the vari-
ation in the basic reproduction number (R0) due to
changes in the inputs (different parameters) with the
help of sensitivity analysis [46]. This study is impor-
tant because it provides insight into which parameters
require a great deal of attention and has the most effect
in the basic reproduction number. Therefore, highly
sensitive parameter values must be collected with cau-
tion as a slight change in that parameter can cause a
huge quantitative change in the amount of concern and
may also produce qualitatively different outcomes. To
control the rapid spread of a disease, we need to be
informed about the factors that can potentially cause
the spread of a disease so that effective measures against
them can be taken well in advance for lessen the trans-
mission. On the other side, the insensitive parameters
don’t require much attention.

The sensitivity index of a parameter [46], say x , is
given by

Ex =
x

R0

∂R0

∂x
.

Table 3 shows the different parameters taken along with
their values calculated from a data set and their sen-
sitivity indices. From this table, it is noted that the
values of Eβ1 , Ea, Eμ and Eε1 are positive and the
increase of these parameters will tend to increase the
value of R0. Further noticed that the values of Eb, Eδ1 ,
Eλ1 , Eη1 and Eμ1 are negative and the increase of these
parameters will tend to decrease the value of R0. More-
over, it is reveal that an increase of a positive parame-
ter, sensitivity index will amount to more spread of the
virus, whereas increase of a negative sensitivity index
will result in the curb in spreading the epidemic. Fur-
thermore, the following observations are recorded based
on sensitivity analysis:

• β1 is the most sensitive parameter. The value of Eβ1

is positive, it indicates that if contact rate of infection
between susceptible and infected people increases,
the value of R0 will increase, which will make it dif-
ficult to stop the spread of COVID-19.

• δ1 is a very sensitive parameter and it increases its
sensitivity as it is increased from 0.01 to 0.4. Since the
value of Eδ1 is negative, it indicates that as infected
home quarantine population rate is increased, R0 will
decrease, which is effective in the containment of
COVID-19.

• Eη1 decreases as η1 is increases from 0.02 to 0.2. Since
Eη1 is negative, i.e., if the rate at which the number
of infected people are shifted to hospital is increased
with better healthcare and facilities, then the pan-
demic can be controlled. It is one of the most sensitive
parameters.

• λ1 increases in sensitivity from 0.01 to 0.5 but ini-
tially decreases for some values near 0.01. Other than
that, it indicates that if the rate at which the num-
ber of people from susceptible population are trans-
ferred to home quarantine population compartment
increases, it will be effective in controlling the com-
munity spread of COVID-19.

• a, b, μ and ε1 are comparatively less sensitive than
the other parameters, as discussed above.

5 Numerical results and discussion

In this section, numerical results to examine the dynam-
ical behavior of various types of population like Popula-
tion of susceptible persons (S1), Population of infected
persons (I1), Population of home isolation persons (Q1),
Population of quarantine persons in hospital (Q2), Pop-
ulation of recovery persons (R1), Population of vacci-
nated persons (V1) are computed by NDSolver in Math-
ematica and illustrated through Figs. 2, 3, 4, 5, 6, 7, 8
and 9. In this study, two sets of data are considered: one
set of data (B1 = 0.04, β1 = 0.2, λ1 = 0.1, μ = 0.03,
μ1 = 0.035, δ1 = 0.03, η1 = 0.12, γ1 = 0.02, ε1 = 0.2,
a = 0.001, b = 0.1), when the reproduction number is
less than 1 (R0 < 1) which means “each existing infec-
tion causes less than one new infection, i.e., the dis-
ease will decline and eventually die out”, used to plot
the Figs. 2, 4, 5 and 6. And the second set of data
(B1 = 0.04, β1 = 0.85, λ1 = 0.4, μ = 0.03, μ1 = 0.035,
δ1 = 0.4, η1 = 0.12, γ1 = 0.02, ε1 = 0.2, a = 0.1,
b = 0.01), where the reproduction number is greater
than 1 (R0 > 1) which means “each existing infection
causes more than one new infection, i.e., the disease
will be transmitted between people, and there may be
an outbreak or epidemic” used to plot the Figs. 3, 7, 8
and 9. The dynamical behaviour of all the population
for non-infected equilibrium point and infected equilib-
rium points are listed in Tables 4 and 5, respectively.
Tables show that initially each population is changing
rapidly with time however the variations in population
are not much after some time (t = 40).

Table 3 Sensitivity Index Table

Parameter (x ) Value of the
parameter

Sensitivity Index
(Ex)

β1 0.2 0.513

η1 0.12 – 0.389

δ1 0.03 – 0.122

λ1 0.1 – 0.086

a 0.001 0.006

b 0.01 – 0.009

μ 0.003 0.003

ε1 0.2 0.076

μ1 0.035 – 0.113
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(a) Existing Model [5] (b) Present Model

Fig. 2 Dynamical behaviour of population at non-infected equilibrium point during community transmission, when
R0 = 0.87607

(a) Existing Model [5] (b) Present Model

Fig. 3 Dynamical behaviour of population at non-infected equilibrium point during community transmission, when
R0 = 1.12424

5.1 Validation of the model

To validate the proposed model for Response of Vac-
cination on Community Transmission of COVID-19,
a comparative analysis between the behaviour of all
the populations (except vaccination) of existing model
[6] and behaviour of all the populations of proposed
model has been predicated through Fig. 2a and b for
R0 = 0.87607. It is reported that behaviour of five pop-
ulations (susceptible persons, infected persons, home
isolation persons, quarantine persons in hospital, and
recovery persons) are very similar for both existing and
proposed model. Same comparative analysis between
existing model [6] and proposed model for R0 = 1.12424
has been computed through Fig. 3a and b and noted
that the nature of different populations is same. It is
further noted from Figs. 2 and 3 that there is quantita-
tive difference in populations between existing model [6]
and proposed model due to one extra population (vac-
cination) is incorporated. Furthermore, it is concluded
that the proposed model is more generalized form and
able to recommend the response of vaccination during
the community transmission.

5.2 Dynamical behavior of population for R0 < 1

In this subsection, first set of data (B1 = 0.04, β1 = 0.2,
λ1 = 0.1, μ = 0.03, μ1 = 0.035, δ1 = 0.03, η1 = 0.12,
γ1 = 0.02, ε1 = 0.2, a = 0.001, b = 0.1) which is for
reproduction number less than one, is considered. The
responses in dynamical behaviour of population under
the effects of the vaccination rates, efficacy rate of vac-
cines and transferring rate of home isolation to suscepti-
ble are computed through Figs. 4, 5 and 6, respectively.

The effects of vaccination rates (a =
0, 0.001, 0.01, 0.02, 0.03, 0.04, 0.05) on dynamical
behaviour of all populations for fixed values of per-
tinent parameters B1 = 0.04, β1 = 0.2, λ1 = 0.1,
μ = 0.03, μ1 = 0.035, δ1 = 0.03, η1 = 0.12, γ1 = 0.02,
ε1 = 0.2, b = 0.1 are shown in Fig. 4a–f. From Fig. 4a,
it is depicted that the susceptible populations decrease
with the increase in time and vaccination rate which
is positive indication of vaccination drive. Figure 4b
illustrated that the infected populations are decreasing
with the increase in time and vaccination rate. This
indicates that we are able to control the peak infection
value which is more important if we can’t control
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(a) (b)

(c) (d)

(e) (f)

Fig. 4 Dynamical behaviour of population with respect to time at non-infected equilibrium state when initial values
(S10 = 0.88, I10 = 0.04, Q10 = 0.08, Q20 = 0, R10 = 0, V10 = 0) and parameter values B1 = 0.04, β1 = 0.2, λ1 = 0.1,
μ = 0.03, μ1 = 0.035, δ1 = 0.03, η1 = 0.12, γ1 = 0.02, ε1 = 0.2, b = 0.1 for various values of a

the disease at early stage. Figure 4c reveals that the
vaccinated populations are increasing with the increase
in time and vaccination rate which is obvious and
validate our model. Since, vaccinated populations
definitely increase when vaccination drive will be
more. Figure 4d reported that the home-isolation
populations are decreasing with the increase in time
and vaccination rate which is directly related to the
vaccination drive and its responses. If the number
of infected person will reduce with increasing the
vaccination drive then the number of home-isolation
populations will also reduce. Figure 4e shows that the

hospitalization populations are declining more rapidly
than the home-isolation population with the increase
in time and vaccination rates. Figure 4f discloses
that the recovered populations are also decreasing
because of less infected and susceptible populations
with increasing the time and vaccination rate. From
Fig. 4a–f, it is clearly depicted that populations are
approaching to some finite value, which is non-infected
equilibrium point (E∗

1 ) after some time.
Figure 5a–f illustrate the effects of efficacy rate of

vaccines, i.e., b = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30 on
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(a) (b)

(c) (d)

(e) (f)

Fig. 5 Dynamical behaviour of population with respect to time at non-infected equilibrium state when initial values
(S10 = 0.88, I10 = 0.04, Q10 = 0.08, Q20 = 0, R10 = 0, V10 = 0) and parameter values B1 = 0.04, β1 = 0.2, λ1 = 0.1,
μ = 0.03, μ1 = 0.035, δ1 = 0.03, η1 = 0.12, γ1 = 0.02, ε1 = 0.2, a = 0.001 for various values of b

the dynamical behaviour of all populations (suscepti-
ble persons, infected persons, home isolation persons,
quarantine persons in hospital, recovered persons and
vaccinated persons) at fixed values of other parameters
B1 = 0.04, β1 = 0.2, λ1 = 0.1, μ = 0.03, μ1 = 0.035,
δ1 = 0.03, η1 = 0.12, γ1 = 0.02, ε1 = 0.2, a = 0.001.
It is reported that populations follow the exponential
growth/decay rule. Figure 5a inferred that with the
increase in time and efficacy rate of vaccines, the sus-
ceptible populations are varying slowly and not much
variation is recorded. However, there is significant dif-
ference in the susceptible persons between vaccinated
and non-vaccinated. Figure 5b shows that the infected
populations are rapidly decreasing with the increase in

time and efficacy rate of vaccines which is positive indi-
cation of the responses of efficacy rate. Figure 5c exam-
ines that the vaccinated populations are increasing with
the increase in time and efficacy rate of vaccines, which
clearly indicate that if more efficient vaccine is being
used to the susceptible populations then the persons
will be safer as compared to less efficacy vaccinated
persons. Figure 5d noticed that the home-isolation pop-
ulations are not changing significantly with the increase
in time and efficacy rate of vaccines because it is more
related to the infected persons. If the infected persons
are more than home-isolation populations will be more.
From Fig. 5e, it is reported that the hospitalization
populations are declining more rapidly as compared to
home-isolation with the increase in time and efficiency
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(a) (b)

(c) (d)

(e) (f)

Fig. 6 Dynamical behaviour of population with respect to time at non-infected equilibrium state when initial values
(S10 = 0.88, I10 = 0.04, Q10 = 0.08, Q20 = 0, R10 = 0, V10 = 0) and parameter values B1 = 0.04, β1 = 0.2, λ1 = 0.1,
μ = 0.03, μ1 = 0.035, δ1 = 0.03, η1 = 0.12, γ1 = 0.02, a = 0.001, b = 0.1 for various values of ε1

rate of vaccines. It is further concluded that more effi-
cient vaccine will protect the infections and provide the
provide the protection in fighting with virus. Due to
that the hospitalization populations will be less with
highly efficient vaccination. Figure 5f reveals that the
recovered populations are also decreasing significantly
with the increase in time and efficacy rate of vaccines
because of less infected and susceptible populations.
From Fig. 5a–f, it is finally concluded that all popu-
lations are approaching at equilibrium point E∗

1 after
some time which shows the stability of the analysis.

The variations in dynamical behaviour of populations
(susceptible persons, infected persons, home isolation
persons, quarantine persons in hospital, recovered per-
sons and vaccinated persons) under the effects of dif-
ferent values of transferring rate of home isolation to
susceptible, i.e., ε1 = 0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30
at fixed values of other parameters B1 = 0.04, β1 = 0.2,
λ1 = 0.1, μ = 0.03, μ1 = 0.035, δ1 = 0.03, η1 = 0.12,
γ1 = 0.02, a = 0.001, b = 0.1 are depicted through
the Fig. 6a–f. It is noted that populations are varying
exponentially with the time. Figure 6a illustrates that
with the increase in time and rate of transferring of
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(a) (b)

(c) (d)

(e) (f)

Fig. 7 Dynamical behaviour of population with respect to time at infected equilibrium state when initial values (S10 = 0.88,
I10 = 0.04, Q10 = 0.08, Q20 = 0, R10 = 0, V10 = 0) and parameter values B1 = 0.04, β1 = 0.85, λ1 = 0.4, μ = 0.03,
μ1 = 0.035, δ1 = 0.4, η1 = 0.12, γ1 = 0.02, ε1 = 0.2, b = 0.01 for various values of a

home isolation to susceptible population in the presence
of vaccination, the susceptible populations are quite
decreasing. In the Fig. 6b, the infected populations
are rapidly decreasing with the increase in time and
the rate of transferring of home isolation to susceptible
populations in the presence of vaccination. Figure 6c
reveals that the vaccinated populations are increasing
with the increase in time and ε1. Figure 6d shows that
the home-isolation populations are decreasing signifi-
cantly with the increase in time and ε1. From Fig. 6e,
it is recorded that the hospitalization populations are
diminishing slightly with the increase in time and ε1.

Figure 6f depicts that the recovered population are also
reducing with the increase in time and ε1 because of less
infected and susceptible populations and less hospital
quarantine populations. From Fig. 6a–f, it is good to
mention that all populations are approaching at equi-
librium point (E∗

1 ) after some time.

5.3 Dynamical behavior of population for R0 > 1

In this subsection, for second set of data (B1 = 0.04,
β1 = 0.85, λ1 = 0.4, μ = 0.03, μ1 = 0.035, δ1 = 0.4,
η1 = 0.12, γ1 = 0.02, ε1 = 0.2, a = 0.1, b = 0.01) which
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(a) (b)

(c) (d)

(e) (f)

Fig. 8 Dynamical behaviour of population with respect to time at infected equilibrium state when initial values (S10 = 0.88,
I10 = 0.04, Q10 = 0.08, Q20 = 0, R10 = 0, V10 = 0) and parameter values B1 = 0.04, β1 = 0.85, λ1 = 0.4, μ = 0.03,
μ1 = 0.035, δ1 = 0.4, η1 = 0.12, γ1 = 0.02, ε1 = 0.2, a = 0.1 for various values of b

is for reproduction no greater than one, is considered.
The responses in dynamical behaviour of population
under the effects of the vaccination rates, efficacy rate
of vaccines and transferring rate of home isolation to
susceptible are computed through Figs. 7, 8 and 9,
respectively.

The impacts of the vaccination rate, i.e., a =
0, 0.12, 0.10, 0.08, 0.06, 0.04, 0.02 on the dynamical
behaviour of all population at fixed values of other
parameters B1 = 0.04, β1 = 0.85, λ1 = 0.4, μ = 0.03,
μ1 = 0.035, δ1 = 0.4, η1 = 0.12, γ1 = 0.02, ε1 = 0.2,
b = 0.01 are shown in Fig. 7. Figure 7a examines
that with the increase in time and vaccination rate,
the susceptible populations are slightly changing. In the
Fig. 7b, the infected populations are diminishing more

slowly as compared to the Fig. 6b with the increase in
time and vaccination rate. Figure 7c reveals that the
vaccinated populations are increasing with the increase
in time and vaccination rate. Figure 7d inferred that the
home-isolation population are reducing very less with
the increase in time and vaccination rate. From Fig. 7e,
it is noted that with the increase in time and vaccina-
tion rate, the hospitalization populations are declining
slowly. Figure 7f investigates that the recovered pop-
ulations are also decreasing with the increase in time
and vaccination rate because of less infected susceptible
and hospital quarantine populations. From Fig. 7a–f, it
is interesting to note that all populations are approach-
ing to infected equilibrium point (Ē1) after some time.
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(a) (b)

(c) (d)

(e) (f)

Fig. 9 Dynamical behaviour of population with respect to time at infected equilibrium state when initial values (S10 = 0.88,
I10 = 0.04, Q10 = 0.08, Q20 = 0, R10 = 0, V10 = 0) and parameter values B1 = 0.04, β1 = 0.85, λ1 = 0.4, μ = 0.03,
μ1 = 0.035, δ1 = 0.4, η1 = 0.12, γ1 = 0.02, a = 0.1, b = 0.01 for various values of ε1

The effects of efficacy rate of vaccines, i.e., b =
0.05, 0.10, 0.15, 0.20, 0.25, 0.30 on dynamical behaviour
of all populations at fixed values of other parame-
ters B1 = 0.04, β1 = 0.85, λ1 = 0.4, μ = 0.03,
μ1 = 0.035, δ1 = 0.4, η1 = 0.12, γ1 = 0.02, ε1 = 0.2,
a = 0.1 are depicted in Fig. 8a–f. Figure 8a shows
that with the increase in time and efficacy rate of vac-
cines, the susceptible populations are changing very
less. Figure 8b noted that the infected populations are
decreasing slowly with the increase in time and efficacy
rate of vaccines. From Fig. 8c, it is reported that the

vaccinated populations are increasing with the increase
in time and efficacy rate of vaccines, which clearly indi-
cates that if the more efficient vaccine is being used to
the susceptible populations then the society is safer as
compared to less efficient vaccines. Figure 8d describes
that the home-isolation populations are not changing
much with the increase in time and efficacy rate of vac-
cines. Figure 8e divulges that with the increase in time
and efficacy rate of vaccines, the hospitalization popu-
lations are declining more rapidly than the home iso-
lation. Figure 8f infers that the recovered populations
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Table 4 Time series at
non-infected equilibrium
point (Fig. 2)

Time S1 I1 Q1 Q2 R1 V1

0 0.88 0.04 0.08 0 0 0

1 0.826392 0.039996 0.136576 0.004587 0.000046 0.000798

2 0.788472 0.041150 0.176239 0.008873 0.000177 0.001456

3 0.761507 0.043007 0.204015 0.012988 0.000388 0.002004

4 0.742192 0.045252 0.223429 0.017005 0.000672 0.002464

5 0.728219 0.047672 0.236956 0.020966 0.001027 0.002853

6 0.717975 0.050125 0.246337 0.024885 0.001448 0.003183

10 0.696284 0.058903 0.262032 0.040073 0.003750 0.004089

20 0.676439 0.070340 0.262064 0.070892 0.012681 0.004936

30 0.664785 0.072891 0.257296 0.088664 0.023430 0.005089

40 0.657418 0.072549 0.253883 0.096743 0.033514 0.005080

50 0.653149 0.071659 0.251807 0.099586 0.041851 0.005047

Table 5 Time series at
infected equilibrium point
(Fig. 3)

Time S1 I1 Q1 Q2 R1 V1

0 0.88 0.04 0.08 0 0 0

1 0.540007 0.144846 0.243824 0.009927 0.000078 0.068071

2 0.330064 0.283336 0.253265 0.033956 0.000485 0.107162

3 0.204720 0.388617 0.210588 0.070397 0.001485 0.128559

4 0.135591 0.444181 0.160533 0.113059 0.003246 0.139824

5 0.099080 0.460162 0.119183 0.156183 0.005807 0.145640

6 0.079929 0.451327 0.089443 0.196053 0.009115 0.148597

10 0.061608 0.342819 0.044478 0.300978 0.027459 0.151186

20 0.071672 0.190644 0.044503 0.320838 0.076837 0.156225

30 0.076196 0.165711 0.048136 0.276549 0.108192 0.166250

40 0.076966 0.163471 0.048830 0.250732 0.125315 0.174675

50 0.077100 0.163647 0.048944 0.239367 0.134988 0.180595

are also reducing with the increase in time and efficacy
rate of vaccines because of less infected and susceptible
populations. From Fig. 8a–f, it is remarkable to point
out that all populations are approaching at Ē1 after
some time.

The changes in the dynamical behaviour of all popu-
lation classes with transferring rate of home isolation to
susceptible, i.e., ε1 = 0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30
for fixed values of other parameters B1 = 0.04, β1 =
0.85, λ1 = 0.4, μ = 0.03, μ1 = 0.035, δ1 = 0.4,
η1 = 0.12, γ1 = 0.02, a = 0.1, b = 0.01 are seen in
Fig. 9a–f. Figure 9a determines that with the increase
in time and rate of transferring of home isolation to sus-
ceptible population in the presence of vaccination, the
susceptible populations are not changing very much.
Figure 9b inspects that the infected populations are
decreasing less with the increase in time and the rate
of transferring of home isolation to susceptible popu-
lation in the presence of vaccination. Figure 9c studies
that the vaccinated populations are increasing with the
increase in time and ε1. Figure 9d reported that the
home-isolation populations are decreasing slowly with

the increase in time and ε1. Figure 9e explains that with
the increase in time and ε1, the hospitalization popula-
tions are declining slowly. Figure 9f computes that the
recovered populations are decreasing with the increase
in time and ε1 because of less infected, susceptible and
hospital quarantine populations. From Fig. 9a–f, it is
curious to record that all population are approaching
at Ē1 after some time.

6 Conclusion

A dynamical approach is employed to examine the
response of vaccination in terms of vaccination rate,
efficacy rate of vaccines and transfer rate of home iso-
lation to susceptible, on the spread of corona virus dur-
ing community transmission for two cases R0 > 1 and
R0 < 1 at infected and non-infected equilibrium points.
These equilibrium points clearly indicate that the dis-
ease persists however the infections could be reduced if
awareness and immunization campaigns shall be more.
For both the cases of reproduction number (R0 > 1
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and R0 < 1), it is verified that all equilibrium points
are stable under certain conditions. Moreover, the vac-
cinated population compartment has a great impact on
the dynamical model. This compartment clearly shows
that infections of the corona virus could be controlled
if the vaccination rate will increase. If the infection will
be controlled then less isolation at home and hospital-
izations will be required. If less hospitalization is there
then less pressure will be there on medical infrastruc-
ture and health warriors. From this dynamical model, it
can be recommended that governments/medical agen-
cies must focus on the vaccination campaigns/drives to
reduce the spread of COVID-19 infection, and safe the
human beings and economy which definitely reduce the
stress of persons. Authors also suggest that more aware-
ness among the people is an important factor regarding
the preventive measures and vaccinations. Many more
factors may affect the spread of COVID-19 infection
and could be addressed in future by the dynamical
model with incorporating the additional parameters.
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