Skip to main content
Log in

An optimization method to keep synchronization features when decreasing network nodes

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Synchronization is one of the substantial network features, which depends on the eigenvalues of the network connectivity matrix. This paper presents an approach based on an optimization algorithm to keep the synchronization pattern when the number of nodes of the network is decreased. The proposed algorithm refines the initially random weights of the reduced connectivity matrix to minimize the mean square error between the eigenvalues of the original and small matrixes. This technique is applied to the network of Lorenz systems with different couplings which have different synchronization patterns. The numerical synchronization error is also computed for the original and small network. It is shown that the smaller network has the same synchronizability as the original one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Mostafi, F. Khan, A. Chakrabarty, D.Y. Suh, M.J. Piran, IEEE Access 7, 40925–40940 (2019)

    Article  Google Scholar 

  2. E.S. Medeiros, U. Feudel, A. Zakharova, Phys. Rev. E 104, 024302 (2021)

    Article  ADS  Google Scholar 

  3. S. Kundu, S. Majhi, D. Ghosh, Eur. Phys. J. Spec. Top. 228, 2429–2439 (2019)

    Article  Google Scholar 

  4. P. Yang, Comp. Softw. Media Appl. 2, 8–11 (2019)

    Google Scholar 

  5. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Phys. Rep. 424, 175–308 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  6. J. Yang, S. Bai, Z. Qu, H. Chang, PLoS ONE 12, e0173514 (2017)

    Article  Google Scholar 

  7. S. Majhi, S. N. Chowdhury, and D. Ghosh, EPL (Europhys. Lett.) 132, 20001 (2020).

  8. S. Rakshit, S. Majhi, D. Ghosh, J. Phys. A 53, 154002 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  9. S. Majhi, D. Ghosh, J. Kurths, Phys. Rev. E 99, 012308 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  10. S. Majhi, D. Ghosh, Chaos 27, 053115 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  11. F. Parastesh, S. Jafari, H. Azarnoush, Z. Shahriari, Z. Wang, S. Boccaletti, M. Perc, Phys. Rep. 898, 1–114 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  12. S. Majhi, D. Ghosh, Chaos 28, 083113 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  13. S. Majhi, P. Muruganandam, F. Ferreira, D. Ghosh, S.K. Dana, Chaos 28, 081101 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  14. K. Rajagopal, S. He, P. Duraisamy, A. Karthikeyan, Chaos 31, 113132 (2021)

    Article  ADS  Google Scholar 

  15. A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Phys. Rep. 469, 93–153 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  16. S. Boccaletti, J. Kurths, G. Osipov, D. Valladares, C. Zhou, Phys. Rep. 366, 1–101 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  17. I. Hussain, S. Jafari, D. Ghosh, M. Perc, Nonlinear Dyn. 104, 2711–2721 (2021)

    Article  Google Scholar 

  18. S. Panahi, F. Nazarimehr, S. Jafari, J.C. Sprott, M. Perc, R. Repnik, Appl. Math. Comput. 394, 125830 (2021)

    Google Scholar 

  19. F. Parastesh, M. Mehrabbeik, K. Rajagopal, S. Jafari, M. Perc, Chaos 32, 013125 (2022)

    Article  ADS  Google Scholar 

  20. M. Mehrabbeik, F. Parastesh, J. Ramadoss, K. Rajagopal, H. Namazi, S. Jafari, Math. Biosci. Engin. 18, 9394–9409 (2021)

    Article  Google Scholar 

  21. S. Wang, S. Bekiros, A. Yousefpour, S. He, O. Castillo, H. Jahanshahi, Chaos Solitons Fractals 136, 109768 (2020)

    Article  MathSciNet  Google Scholar 

  22. S. Panahi, S. Jafari, Discrete Contin. Dyn. Syst. S 14, 1359–1373 (2021)

    Article  Google Scholar 

  23. L.M. Pecora, T.L. Carroll, Int. J. Bifurcat. Chaos 9, 2315–2320 (1999)

    Article  Google Scholar 

  24. S. Panahi, S. Jafari, Int. J. Mod. Phys. B 34, 2050024 (2020)

    Article  ADS  Google Scholar 

  25. R. Berner, S. Vock, E. Schöll, S. Yanchuk, Phys. Rev. Lett. 126, 028301 (2021)

    Article  ADS  Google Scholar 

  26. S. Coombes, R. Thul, Eur. J. Appl. Math. 27, 904–922 (2016)

    Article  Google Scholar 

  27. S. Rakshit, F. Parastesh, S.N. Chowdhury, S. Jafari, J. Kurths, D. Ghosh, Nonlinearity 35, 681 (2021)

    Article  ADS  Google Scholar 

  28. S.N. Chowdhury, S. Majhi, D. Ghosh, A. Prasad, Phys. Lett. A 383, 125997 (2019)

    Article  MathSciNet  Google Scholar 

  29. B. Cai, Y. Wang, L. Zeng, Y. Hu, H. Li, Physica A 556, 124826 (2020)

    Article  Google Scholar 

  30. R. Toth, A.F. Taylor, M.R. Tinsley, J. Phys. Chem. B 110, 10170–10176 (2006)

    Article  Google Scholar 

  31. H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, A.-L. Barabási, Nature 407, 651–654 (2000)

    Article  ADS  Google Scholar 

  32. X. Cheng, J. Scherpen, Annu. Rev. Control Rob. Auton. Syst. 4, 425–453 (2021)

    Article  Google Scholar 

  33. J. Gao, B. Barzel, A.-L. Barabási, Nature 530, 307–312 (2016)

    Article  ADS  Google Scholar 

  34. D. Gfeller and P. De Los Rios, Phys. Rev. Lett. 99, 038701 (2007).

  35. L. Huang, Q. Chen, Y.-C. Lai, L.M. Pecora, Phys. Rev. E 80, 036204 (2009)

    Article  ADS  Google Scholar 

  36. E.N. Lorenz, J. Atmos. Sci. 20, 130–141 (1963)

    Article  ADS  Google Scholar 

  37. G. Qi, H. Huang, H. Wang, X. Zhang, and L. Chen, EPL (Europhys. Lett.) 74, 733 (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farnaz Ghassemi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naseri, N., Parastesh, F., Karami, M. et al. An optimization method to keep synchronization features when decreasing network nodes. Eur. Phys. J. Spec. Top. 231, 3971–3976 (2022). https://doi.org/10.1140/epjs/s11734-022-00626-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00626-2

Navigation