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Abstract Currently, the world has been facing the brunt of a pandemic due to a disease called COVID-19
for the last 2 years. To study the spread of such infectious diseases it is important to not only understand
their temporal evolution but also the spatial evolution. In this work, the spread of this disease has been
studied with a cellular automata (CA) model to find the temporal and the spatial behavior of it. Here, we
have proposed a neighborhood criteria which will help us to measure the social confinement at the time
of the disease spread. The two main parameters of our model are (i) disease transmission probability (q)
which helps us to measure the infectivity of a disease and (ii) exponent (n) which helps us to measure the
degree of the social confinement. Here, we have studied various spatial growths of the disease by simulating
this CA model. Finally we have tried to fit our model with the COVID-19 data of India for various waves
and have attempted to match our model predictions with regards to each wave to see how the different
parameters vary with respect to infectivity and restrictions in social interaction.

1 Introduction

Epidemics and pandemics have a long story throughout
human history. Recently human civilization has faced
another pandemic named COVID-19. This pandemic
has affected many countries through multiple waves.
Total of 504,451,689 people have been infected world-
wide and 6,222,430 people have died due to COVID-19
till 17 April 2022. In India 43,042,097 people have suf-
fered and 521,781 have died as of 17/04/2022 due to
this disease [1]. COVID-19 is caused by the virus which
is named SARS COV-2. Multiple variants of this virus,
like delta, omicron and many others makes it harder to
control and predict its behavior. Recently another vari-
ant of COVID-19 named XE has been found [2]. Math-
ematical modeling helps us to understand the behav-
ior of disease spread such that prevention and control
strategies can be built. In addition, mathematical mod-
els can help us to find some inherent properties of the
disease and nature of its spread.

There are many different types of models that have
been used in the past to study various diseases. These
models are mainly modified versions of the Kermack
McKendrick SIR model which is based on a system
of coupled ordinary differential equations [3]. Cur-
rently, the ODE-based models and statistical mod-
els are widely used in literature to model the tempo-
ral behavior of the spread of COVID-19 from differ-
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ent aspects. Most of these models have tried to ana-
lyze the spread of this disease and tried to predict its
future behavior [4–7]. There are models which have
proposed various intervention and vaccination strate-
gies to prevent and control the spread of the disease
[8–12]. Also, some authors have tried to predict dif-
ferent inherent properties of this pandemic like herd
immunity and its chaotic nature [13–17]. These tem-
poral models can give us much valuable information,
however, most of these models assume that a pop-
ulation is homogeneously mixed and cannot describe
any spatial behavior. To incorporate this spatial
behavior, deterministic and probabilistic spatio-
temporal models have been used in recent studies. Cel-
lular automata (CA) is one such kind of spatio-temporal
model.

Cellular automata (CA) has been used in many stud-
ies to model different aspects of epidemics. It has been
widely used to model the disease spread of influenza
and various vector-borne diseases, such as dengue [18–
26]. A neighborhood condition is an important aspect in
the CA. The most used neighborhood conditions are (i)
Neumann’s neighborhood condition, (ii) Moore’s neigh-
borhood condition, (iii) Extended neighborhood condi-
tion, and (iv) Random interactions. Coupled with these
neighborhood conditions, various models such as SEIR,
SEIRS, SEIRD, and SEIRQD have been studied with
the help of CA to model the spatial growth of epi-
demics [19,22,27–32]. Currently, CA has gained a lot of
momentum in the studies of COVID-19 [33–35]. Various
advanced studies with Genetic algorithms and network
models have been done for COVID-19 data [35–38].
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In this paper, we have tried to model COVID-19
using cellular automata (CA) to find spatio-temporal
behavior of it. We have also made some analysis to
understand its behavior in different waves of the dis-
ease. A cellular automata (CA) model is represented in
a square lattice and defined by some neighborhood and
boundary conditions, the details of which are given in
following sections.

This paper is arranged as follows: Sect. 2 consists of
a detailed discussion of the model, neighborhood con-
ditions, and probability of infection. The algorithm,
results of the simulations have been shown in Sect. 3
and the data analysis is shown in Sect. 4. Finally, Sect. 5
consists of the conclusions of our model.

2 Mathematical model

In this article, we have illustrated a Cellular automata
(CA) model for epidemics and assumed the SEIR model
as the base model. SEIR model stands for Susceptible–
Exposed–Infectious–Removed. Here we have considered
a N × N square lattice, where each cell of the lattice is
assumed to be a person. Each cell of the lattice can have
the set of states, S = {S,E, I,R} and these states are
represented by the values V = {0, 1, 2, 3}. The updation
of a cell’s state depends upon various conditions such as
(i) the current state of the cell, (ii) the amount of time
spent in the current state, and (iii) the current states
of the neighbors. The main assumptions of our model
are given below:

• Every cell represents a person.
• Only susceptible persons can interact with the other

cells.
• A removed person cannot be infected again.
• For this CA model, we have assumed a periodic

boundary condition. If a cell of ith row and jth col-
umn of a N × N lattice is denoted by (i, j) then

(N + 1, j) ≡ (1, j) j = 0, 1, ...N.

(i,N + 1) ≡ (i, 1) i = 0, 1, ...N.
(1)

• One susceptible person can interact with a single
person in each time step.

2.1 Neighborhood condition

Nearest neighborhood condition is a widely used con-
cept in the literature. Here, it has been assumed that a
particular cell can only interact with its nearest neigh-
borhood cells. Such two famous neighborhood condi-
tions are: (i) Neumann’s neighborhood condition and
(ii) Moore’s neighborhood condition.

Figure 1 shows the two neighborhood conditions.
Figure 1a shows Neumann’s neighborhood condition,
where the nearest neighborhoods of any chosen (i, j)
cell are the first neighborhood cells with respect to the
chosen cell. Similarly, Fig. 1b shows Moore’s neighbor-

hood condition. In this case, all first and second neigh-
borhoods are treated as the nearest neighborhoods of
the chosen (i, j) cell.

In this work, we have assumed that a cell can inter-
act with any other cells depending on the probability of
interaction (pint) between them. Here we have assumed
that the probability of interaction (pint) of a cell (i, j)
to any other cell varies inversely as a function of d (dis-
tance between two cells) in the form of a power law.
Hence

pint(d) ∝ 1
dn

(2)

where n is the degree exponent and can have a value
greater than zero. Here, we have assumed that the dis-
tance between two cells is not just the geometrical dis-
tance between two. It depends on the layer number (l).
In Fig. 2, we have shown how layers are defined. In
addition, it shows that a layer l contains the 8l number
of cells. If we choose a lattice of size N × N then the
total number of layers in this lattice with respect to any
cell is L = N−1

2 , when N is odd.
Hence, we can write

d ∝ l. (3)

(a) Neumann’s neighborhood
condition.

(b) Moore’s neighborhood
condition.

Fig. 1 Different neighborhood conditions. Blue cells rep-
resent the nearest neighborhoods of (i, j) cell

Fig. 2 Different layers of a lattice with respect to (i, j) cell
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For mathematical simplicity, we can assume d = l.
Hence, from Eq. 2 we can write

pint(d) = pint(l) ∝ 1
ln

(4)

If there are L number of layers then the above equa-
tion can be written as

pint(l) =
1
ln

∑L
l=1

1
ln

=
1

Anln
(5)

where An =
∑L

l=1
1
ln . Hence, a person at the (i, j)

cell can interact with any other cell of layer l with a
probability pint(l). Thus, average interaction distance
(〈d〉) can be defined as

〈d〉 =
L∑

l=1

lpint(l) =
1

An

L∑

l=1

l
1
ln

=
1

An

L∑

l=1

1
ln−1

(6)

Figure 3a shows the variation of average interaction
distance (〈d〉) with the degree exponent (n). From this
figure, it can be found that the average interaction dis-
tance (〈d〉) is quickly decreases and saturates to unity as
n increases. In addition, from Fig. 3b it can be seen that
the average interaction distance (〈d〉) is approximately
∼ 1 for exponents n > 3. Hence for n � 3 the neigh-
borhood condition is approximately similar to Moore’s
neighborhood condition as discussed earlier and does
not give any significantly different results.

2.2 Probability of infection (QI )

Let, q denotes the disease transmission probability
when a susceptible and an infectious person interact.
The probability that a susceptible person will interact
with any person at the layer l is pint(l). If the prob-
ability of finding an infectious person in that layer is
pI(l) then the probability that the susceptible person
will be infected is qpint(l)pI(l). Hence, the probability
of infection (QI) of a susceptible person is

QI = q
L∑

l=1

pint(l)pI(l). (7)

As, pint(l) = 1
Anln

, from the above equation (Eq. 7) we
can write

QI =
q

An

L∑

l=1

pI(l)
ln

(8)

From the above equation (Eq. 8), we can say that the
terms with small layer number (l) dominate the sum-
mation. Hence, the infection possibility of a suscepti-
ble person mainly depends on the infection situation
around the person.

Thus in our model, instead of choosing a traditional
neighborhood condition, where the degree of the inter-
action is fixed, we have assumed a model, where we can
vary the degree of the social confinement by changing n
(degree exponent). In addition, we have calculated the
probability of infection (QI) for this modified model.

Fig. 3 Plots of average interaction distance (〈d〉) with n
and the total number of layers (L). a Plot of average inter-
action distance (〈d〉) with n by considering the total number

of layers (L) = 50. b Plot of average interaction distance
(〈d〉) with the total number of layers (L) for n=3,4, and 5
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3 Algorithm and simulations

3.1 Algorithm

Here, we have discussed the state updation algorithm
of the SEIR model. As we have mentioned earlier, every
cell’s state is denoted by a value (v) which is present in
this set {0, 1, 2, 3}. The algorithm is given below:

• Let, at time t there is a susceptible person at
(i, j) cell. Therefore, the value of the (i, j) cell is
v(i, j, t) = 0 and the probability of infection is
QI(i, j, t). To find the infection possibility of the sus-
ceptible person, we will generate a uniform random
number u between 0 and 1.
If, u ≤ QI(i, j, t) then the susceptible person is
exposed and at time t + 1 the state of the (i, j) cell
will be changed from v = 0 to v = 1.
else, at time t + 1 the state of the (i, j) cell will be
unchanged.

• An exposed person (v = 1) will remain exposed for
τI number of days. After that, the person will be
infectious and the state of the corresponding cell
will be changed from v = 1 to v = 2.

• An infectious person will remain in this state for
τR number of days. After that, the person will be
removed (recovered or dead) and the state of the
cell will be changed from v = 2 to v = 3.

3.2 Simulation

In this part, we have done simulation of our model with
n = 1, 2, 3. The values of the parameters and initial
conditions that are used in the simulations are listed in
the tables (Tables 1 and 2) below:

In Fig. 4, the first plot shows the temporal behavior of
the exposed cases (E(t)) and the infectious cases (I(t))
of the epidemic. These temporal plots are averaged on
50 simulation samples. The rest plots of Fig. 4 are
CA plots that represent the spatial evolution of disease
spread. From these CA plots, we can hardly detect any
clustering of the infected cases. This happens, because

Table 1 Table for the parameter values that are used in
the simulations

Description of
the
parameters

Parameters Values of the
parameters

Lattice size N × N 101 × 101
Disease
transmission
probability

q 0.3

Latency
period of the
disease

τI 8 days

Removal
period

τR 18 days

Table 2 Table for the initial conditions of the
simulations

States Initial values

S(0) 10200
I(0) 1
E(0) 0
R(0) 0

the average interaction distance, 〈d〉 ≈ 11.11. Thus a
susceptible person can be infected by an infectious per-
son who is far away from the susceptible one.

In Fig. 5, the first plot again shows the temporal
growth of the epidemic. It can be seen from the CA
plots that for n = 2, clusters are formed. The reason
behind this is the short average interaction distance.
For n = 2, the average interaction distance, 〈d〉 ≈ 2.77.
In addition, from the temporal plot, we can see that
the infection spread time is increased than in the n = 1
case. This is also because of the short average interac-
tion distance. For a short average interaction distance,
only a few susceptible persons can interact with the
infectious person. So, if most of those susceptible per-
sons become infected then the infectious person cannot
spread the disease further. Whereas, for n = 1 case,
an infectious person can interact with many suscepti-
ble persons. Hence, an infectious person can infect more
people during the infectious period.

Figure 6 shows the evolution of the disease for n = 3.
Here we can also clearly find the clusters. These clusters
are more prominent than the n = 2 case because of
the less average interaction distance (〈d〉). Value of the
average interaction distance for n = 3 is 〈d〉 ≈ 1.35.
Here we can see that the disease takes a longer time to
fall for n = 3 than for n = 1 and n = 2. The reason
behind this is the lower value of the average interaction
distance which is discussed earlier.

Hence, from the above discussions, we can con-
clude that the clustering behavior of the disease spread
depends on the average interaction distance (〈d〉) as
well as on degree exponent n. In addition, the average
interaction distance (〈d〉), gives an average estimation
of the number of susceptible persons who can interact
with an infectious person which is represented by 8〈d〉.
Therefore, for a large 〈d〉 (or small n) an infectious per-
son can spread the disease to distanced region. Thus
the infection period depends on the average interaction
distance (〈d〉) and also on n.

4 Comparison with data

In this section, we have tried to fit our model with cur-
rent COVID-19 data. Our model has four free param-
eters which are, (i) q : disease transmission probabil-
ity, (ii) n : degree exponent, (iii) τI : mean latency
period, (iv) τR : mean infectious period. We have opti-
mized these free parameters for different waves of the
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Fig. 4 Plots of the temporal and spatial behavior of the disease spread for n = 1

COVID-19 pandemic in India. Here, we have consid-
ered each wave separately and normalized the active
cases of each wave with the total number of infected
cases in the respective wave. The data is taken from
covid19india.org [39]. The date range of the different
waves that we have considered here are given in Table 3.

To fit the model with the data we have optimized the
sum of squared errors (SSE):

SSE =
∑

k

(
idk − ik

)2
(9)

idk : fraction of the active cases from the data. ik : frac-
tion of the infectious cases from the model.

The results of the best fit parameter values are given
below.

We have optimized COVID-19 data with a 101× 101
lattice space. Figure 7a, b shows the fitted model along
with data for the first and the second wave.

Here we can see that the model fits reasonably well
with the data. Also from Table 4, we see that the disease
transmission probability (q) increases and the degree
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Fig. 5 Plots of the temporal and spatial behavior of the disease spread for n = 2

exponent (n) decreases in the second wave as com-
pared to the first wave. Increment of q represents that
in the second wave of the disease it was possibly more
infectious and spread faster than in the first wave. Also
decrement of n indicates that the interaction between

infectious and the susceptible population spread out to
a larger distances in the second wave as compared to the
first wave. This is possibly because of the COVID pro-
tocols which is relaxed much more in the initial phase
of the second wave as compared to the first wave.
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Fig. 6 Plots of the temporal and spatial behavior of the disease spread for n = 3

Table 3 Date ranges for different waves

Waves Start date End date

First wave 30-Jan-2020 16-Feb-2021
Second wave 17-Feb-2021 31-Oct-2021

Table 4 Fitting parameter values for different waves

Waves q n τI (days) τR (days)

First wave 0.1950 1.9310 5 11
Second wave 0.2406 1.3449 8 10

5 Conclusions

In this section, we have summarized the main features
and results of our model. The cellular automata (CA)
is a very common tool to model a disease spread and
has been used extensively in literature for studying dif-
ferent systems. In this paper, we have modeled the CA
by proposing a new neighborhood criteria. Usually in
earlier studies, neighborhood condition is such that the
neighborhood of a lattice cell is always fixed. Whereas
in our model, rather than choosing a specific neighbor-
hood condition, we assume that a lattice cell can inter-
act with any other cell at distance d with a certain prob-
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Fig. 7 Model fitting of the COVID-19 data of India a Model fitting of the first wave. b Model fitting of the second wave

ability which is called interaction probability (pint(d))
(Eq. 5). We have assumed that the interaction proba-
bility (pint(d)) is a function of the distance (d) and has
a form of inverse power law with degree exponent n.
Here, exponent n is a very important parameter as it
enables us to tune the social confinement of our model.
With this newly defined neighborhood criteria, we have
calculated various relations such as average interaction
distance (〈d〉) and the probability of infection (QI) to
understand and represent our model properly.

From Fig. 3a, we can see that the average interaction
distance (〈d〉) deceases and saturation is reached to ∼ 1
as n increases. Therefore, for a higher n, a person can
mainly interact with nearest neighbors. However, for
a smaller value of n, a person can interact with the
distant neighbors. Hence higher values of n represents
higher social confinement and viceversa. Also we want
to mention that for exponents, n > 3, the average inter-
action distance, 〈d〉 ≈ 1. Thus the values n � 3 do not
give us any new results.

In the simulation section, we have studied the tem-
poral and spatial behavior of our model for different
degree exponents (n). As n increases, the disease spread
becomes slower and it is more clustered. This happens
because of the decrease in the average interaction dis-
tance (〈d〉) or in the other words increase in the social
confinement with increasing values of n. Thus the dis-
ease transmission probability (q) and the degree expo-
nent n regulates the speed of the disease spread.

Also, we have compared our model with COVID-19
data of India for different waves. We have first normal-
ized the active cases of a wave with the total number
of infected cases in that wave. Then we have optimized
the sum of squared errors of the fraction of infectious
cases (Eq. 9) to get the best fit result with the data.
Here all simulations are done on a 101×101 lattice. We
have found that the disease transmission probability (q)
increases in the second wave than the first wave. This
means that the disease is more infectious in the second
wave than the first wave. In addition, the degree expo-

nent (n) decreases in the second wave. This implies that
the decrement in the COVID-19 restrictions (or decre-
ment in the degree of social confinement) at the initial
time of the second wave played a significant role to the
faster spread of the disease. Our model fits the peak
of the waves well, however, fall in the data at the end
of both waves and plateauing at the end of the second
wave have some mismatch with our fitted model. This
possibly indicates that our model needs to be modified
to incorporate these aspects which we will look at in
our future works.

Modeling spread of a disease is a very complicated
process, since several factors have to be considered.
Non-uniform distribution of the population and eco-
nomic situation of the regions are two major factors
which affects the disease spread. In future we want to
look at these complex aspects by refining this model to
find the behavior of the disease spreading more accu-
rately. We would also like to study these possibilities in
the context of COVID-19.
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