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Abstract In the present work, a study has been made over the prime stock indices of some fiscally prominent
countries impacted by COVID-19. The countries are separated in two ways: (1) considering gross total
number of infected cases—here seven mostly impacted countries with certain global economic influence are
selected; (2) considering the concentration of the infected cases—here six major impacted countries with
considerable influence are selected. This sort of categorization is itself a novel strategy which is capable
of including some less populated, but severely impacted countries of economic importance. The objective
of the present analysis is to comprehend the impact of COVID-19 on these markets and to recognize the
effect of COVID-19 on mutual association and dependence between these markets. To add more flavour
of reliability, we have taken a new and fresh strategy of fixing the time frames under consideration before
and during COVID-19 pandemic as uniform. We have used both linear and nonlinear Granger causality
analysis and employed generalized forecast error variance decomposition analysis to review the exogeneity
and endogeneity of the individual markets. The present study shows that this pandemic has changed
the underlying relationship: some exogenous stock markets have become endogenous and vice versa in
the pandemic. Linear relationship has been reduced radically, whereas nonlinear relationship has been
improved during the COVID-affected period. TASE, the highest returned and significantly uncorrelated
index, emerged as the most exogenous market in the pre-COVID period, though it is nonlinearly endogenous
in the long term, in the COVD-affected period. CAC 40 is the most endogenous market for the short term in
both pre-COVID and COVID-affected period. B3 and NYSE, exogenous in the pre-COVID period, turned
out to be linearly endogenous in the COVID-affected duration, whereas BIST 100 and BSE SENSEX are
found to be exogenous markets in the COVID-affected period according to both linear and nonlinear causal
analysis. They were also exogenous in the pre-COVID era for the short-term period, with BSE SENSEX
exhibiting exogeneity anti-persistently for the COVID-affected period too. Association among the markets
is more in long term rather than short term. A possible conclusion is also that the markets may regain
long-term association once the effect of COVID would fade away.

1 Introduction

The hasty stretch of COVID-19 pandemic has emerged
as a global peril. This has impacted the global stance
surprisingly, and this menace is not only a global health
emergency issue, but has also resulted in a momentous
slump to global economy. A huge number of countries
at different periods of time have imposed lockdown with
a multitude of strategies as well as quarantine policies
and social distancing measures to acquire some sort of
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control over this catastrophe. Even in the absence of
strict imposition of lockdown, there was restriction and
limit in intra- and intercountry haulage to put a brake
to the brisk proliferation of the virus. To add to this
aggravation, sensing an insane uncertainty and being
panic stricken, the nature of consumption and stockpile
among the consumers transformed drastically. Finan-
cially weaker companies are suffering a lot and unorga-
nized sectors have been greatly affected. There are mil-
lions of official reports of recently jobless people from
different corners of the globe. Newly muted variants of
SARS-Cov-2 virus, viz., Alpha, Beta, Gamma, Delta,
Omicron etc., in a very short span of time are being gen-
erated,worsening the situation. Wang and Han [1] have
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warned that the COVID-19 pandemic may not end with
Delta (B.1.617.2) and the latest muted variant Omi-
cron (B 1.1.529). Gowrisankar et al. [2] observed that
Omicron did not alter the pattern of the daily posi-
tive cases. Wang and Cheng [3] performed a sequence
analysis of Omicron in South Africa. Easwaramoorthy
et al. [4] compared and estimated the epidemic curve
of the first and second wave of COVID-19. In this con-
nection, some models have been proposed to identify
the scenario of the spread of COVID-19 and conse-
quent patterns [5–8]. Jamez and Menzies worked with
92 countries and observed that the equity market of
a country is not dependent on its success in manag-
ing COVID-19 [9]. Kavitha et al. [10] tried to provide
an estimated time frame for the ending of the sec-
ond and third wave of COVID-19 pandemic in India.
Baret et al. [11] showed that there is a global decline in
the share of oil and equity due to the COVID-19 pan-
demic. Izzeldin [12] inferred that COVID-19 negatively
impacted the stock markets of G7 countries, along all
sectors, with healthcare and consumer service facing the
hit most and the technology sector being least affected.
Heliodoro et al. [13] deduced that integration between
G7 markets was significantly lower during the COVID-
19 period September, 2019 to June, 2020. Kumeka et al.
[14] found that the Nigerian stock market responded
negatively to both domestic and global growths in the
total confirmed cases of and deaths due toCOVID-19
from February 27, 2020 to September 4, 2020. Igwe [15]
raised the concern of a possible increase in volatility
in stock markets due to this pandemic. A considerable
amount of drop in the US and UK markets was visible
during March, 2020 [16]. Bora and Basistha [17] showed
that the volatility of in Indian stock markets increased
during this pandemic.

Samadder and Bhunia [18] concluded that out of the
top 45 stock markets in terms of market capitaliza-
tion, those of about one-third countries (viz. Greece,
Columbia, Mexico, Spain, Bangladesh, Great Britain,
Nasdaq-USA, NYSE-USA, New Zealand, Shenzhen-
China, Switzerland, Canada, Poland, and Austria) are
volatile. Burdekin et al. [19] and Salisu et al. [20] com-
prehended that volatility increased from January 1,
2020 to September 30, 2020. Oluwasegun et al. [21],
using TVP-VAR, evidenced a strong volatility spillover
across S&P 500, gold, crude oil, bitcoin and USD, from
January 21, 2020 to July 2, 2020. However, Watorek
et al. [22] have drawn a rather optimistic conclusion
that though enormous, the evil impact of COVID-
19 over the global market will be short-time or anti-
persistent.

Bal and Mohanty [23] deduced that daily cases of
COVID-19 and Indian stock markets linearly Granger
cause each other. Samadder [24] investigated that lin-
ear Granger causality decrease and nonlinear Granger
causality increases in the 2011–2020 decade, in the
case of major stock market indices listed in E7 group,
with IBOVESPA of Brazil and SSE of China emerg-
ing as the most exogenous and endogenous markets in
this period. Gherghina et al. [25] employed Granger
causality on autoregressive distributive lag (ARDL)

model of daily stock market returns of Bucharest stock
exchange, in the time frame of December 31, 2019 to
April 20, 2020 and emphasized that the daily death
cases of Italy have a negative effect on Romanian 10-
year bond yield. Romanian 10-year bond yield, com-
pared to Bucharest stock exchange, is more sensi-
tive to the news of COVID-19. Prabheesh [26] using
Toda and Yamoto Granger causality test, showed that
foreign portfolio (FPI) has unidirectional causality
effect on NIFTY 50 in the period from January 1,
2020 to September 30, 2020. Amar [27] carried out
Toda–Yamamoto–Dolado–Lütkepohl (TYDL) causality
analysis on the global (S&P Global 1200), regional
(S&P Asia 50, S&P Europe 350) and country (S&P
500, S7P China 500, S7P Japan 500) scenario dur-
ing COVID-19 crisis period between December 31,
2019 and June 30, 2020 and observed that the Chi-
nese stock market had no influence on the rest of the
indices, whereas the European stock index appeared
to influence other market sentiments. Oluwasegun
et al. [21] used Granger linear causality test and
non-linear causality test of Balcilar et al. [28] and
found existence of a fair amount of casualty between
COVID-19 pandemic and connectedness among the
assets, with mostly established causality at the lower
and middle level quartiles. Camba and Camba [29]
applied Granger causality test on the Philippines stock
exchange index, peso–dollar exchange and retail pump
price of diesel in the Philippines and observed that
COVID-19 daily infections unidirectionally affected
the Philippines stock exchange index and peso–dollar
exchange, but has no effect on the retail pump price of
diesel in the Philippines.

Variance decomposition method, performed on the
same data set in the short run, divulges that COVID-
19 daily infections are responsible for explaining only
a small part of the fluctuations of Philippines stock
exchange index, peso–dollar exchange and retail pump
price of diesel in the Philippines [29]. Prabheesh and
Kumar [30] induced structural variance decomposi-
tion on oil price returns, exchange rates, NIFTY 50
returns, and uncertainty shocks in India and compre-
hended that the COVID-19-induced uncertainty dis-
torted the dynamics between oil and stock prices in
the initial periods from December 31, 2019 to April
28, 2020. Jelilov et al. [31] analyzed that all share
index return responded negatively to COVID-19 shock
between February 27, 2020 and April 20, 2020. Siri-
opoulos et al. [32] searched the reasons for the volatil-
ity in European stock exchanges in the first 4 months
of 2020 and generalized the impulse response func-
tion and variance decomposition method and inter-
preted that the Chinese stock market accounted for
about 34% of the volatility of European stock markets,
whereas international uncertainty was responsible for
7% of the volatility. Moreover, the impact of COVID-
19 daily cases and deaths on European stock markets
is negligible, below 1%. Zhang and Mao [33] employed
Granger causality to find the relation between Shang-
hai–Shenzhen 300 and S&P 500 from January 1, 2019
to June 30, 2020, dividing the whole period into three
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time frames and concluded that Shanghai–Shenzhen
300 Granger caused S7P 300 for all the periods, but not
the reverse. Variance decomposition analysis on these
two indices strengthens this result.

Though these studies analyzed volatility, causality
and variance decomposition either individually for some
stock exchange or for a group of indices, none of them
considered the choice of the countries according to the
severity of impact of COVID-19, either by considering
gross total number of infected cases, or by consider-
ing the concentration of the infected cases (number
of infected cases per million population). Here in the
present study, to have a better outlook, we selected
and categorized the countries in the above two ways:
(1) in the first category, seven most impacted countries
with certain global economic influence were selected,
viz. USA, India, Brazil, France, Turkey, UK and Italy;
(2) in the second category, six major impacted countries
with considerable influence were selected, viz., Sweden,
Netherlands, Belgium, Israel, Spain and Switzerland.
Also, the time frames under consideration before and
during the COVID-19 pandemic for most of the avail-
able literature were not uniform, but we have taken
these to be uniform to have a more balanced compari-
son and reliable study.

In the present work, we have exercised both lin-
ear and nonlinear Granger causality analysis [34–36]
to understand how lethal the shock of COVID-19 was
on these leading stock markets and how the recipro-
cated association and dependence between these mar-
kets were reordered and restructured by this pandemic.
Also, we have employed generalized forecast error vari-
ance decomposition analysis [37, 38] to reassess the exo-
geneity and endogeneity of these markets. In fine, the
present analysis is an excursion over the imperative out-
look of the pan global interplay between financial inde-
pendence and cohesiveness as it was just before this
pandemic and as it is emerging during the pandemic.

2 Data and methodology

The study is based on the analysis over the prime
stock indices of some economically influential coun-
tries impacted by COVID-19 categorized into two based
on impact: (1) on the basis of gross total number of
infected cases and here seven mostly impacted countries
with certain global economic influence were selected,
viz., USA (34.549,398), India (30,410,577), Brazil
(18,559,164), France (5,775,301), Turkey (5,425,652),
UK (4,800,048) and Italy (4,259,906); (2) on the basis
of the density of the infected cases (number of infected
cases per one million population)and here six major
impacted countries with considerable fiscal influence
were selected, viz., Sweden, Netherlands, Belgium,
Israel, Spain and Switzerland [39]. Thefirst case of
COVID-19 was reported on December 29, 2019 [40].
Hence, the analysis was performed in two time frames
termed: pre-COVID period (from 1 July 2018 to 31

December 2019) and COVID-affected period (1 Jan-
uary 2020 to 30 June 2021). We have taken similar
time frames for the pre-COVID and COVID-affected
periods to balance the scale to have a more neutral
analysis. Daily log return series of the prime stock
exchanges of the above-mentioned countries were taken
into consideration, viz., AEX Index (Netherlands),
BEL 20 (Belgium), BIST 100 (Turkey), Brazil Bolsa
Balcao/B3 (Brazil), BSE SENSEX (India), CAC 40
(France), FTSE MIB (Italy), IBEX 35 (Spain), London
Stock Exchange/LSE (UK), NYSE composite (USA),
OMX Stockholm 30/ OMX 30(Sweden), Swiss Market
Index/SMI (Switzerland) and TASE (Israel) [41–45]. If
Pt is the daily closing value of the stock index, the series
under consideration is ln

(
Pt

Pt−1

)
. As the log return series

has a higher chance of being stationary, which is the
prime condition to fit the vector autoregressive model
(VAR), as well as it is expected to be detrended, it is
taken into account for our analysis.

As different stock exchanges have different holidays
and data over some of the days are not available, data
for mismatched dates among all the indices are omit-
ted to make the analysis uniform. The number of data
points for the pre-COVID period and COVID-affected
period are 227 and 241, respectively.

Econometric analysis for augmented Dickey–Fuller
(ADF) unit root test [46] and linear Granger causal-
ity [34] was performed using Eviews 11 package soft-
ware, whereas nonlinear Granger causality [35, 36]
test was estimated using GCtest-win software. Fore-
cast error variance decomposition using generalized
impulse response function was obtained using MAT-
LAB R2021A software with Econometrics toolbox.

2.1 Augmented Dickey–Fuller unit root test

Augmented Dickey–Fuller unit root test [46] is one of
the efficient techniques to check the stationary nature
of a time series. If yt, t = 1, 2, . . . , N represents a time
series, an autoregressive model with lag p is given by

yt = α + βt +
p∑

i=1

φiyt−i + et, (1)

where et is the residual series and α + βt is the linear
deterministic trend. Lag order can be selected based
on different information criteria such as Akaike infor-
mation criterion (AIC), Schwartz information criterion
(SIC), and Hannan–Quinn Information criterion (HIC).
Dickey–Fuller regression equation corresponding to this
AR (p) model is given by

Δyt = α + βt + γyt−1 +
p∑

i=1

δiΔyt−i + et, (2)

where Δ is the first difference operator. Clearly, γ =
φ1 − 1. For non-stationary process, changes of yt, i.e.,
Δyt, should not depend on the current level yt. So, γ
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should be 0, or alternatively φ1 = 1, indicating unit
root is present in the model. Ho: γ = 0 (series is non-
stationary) is tested against H1:γ ¡ 0. If the absolute
value of test statistic DFγ = γ̂

SE(γ̂) is greater than crit-
ical value at a specified level of significance, the null
hypothesis is rejected, i.e., assumption of stationarity
of the model is accepted.

2.2 Multivariate vector autoregression and linear
Granger causality analysis

A multivariate vector autoregression (VAR) model
of lag p corresponding to n number of variables
y1, y2, . . . yn, each of size N and error term is given
by

Yt = ϕ0 +
p∑

k=1

ϕkYt−k + εt, (3)

where Yt = (y1, y2, . . . yn)T, ϕl = (ϕij)
(l)
n×n for l =

1, 2, . . . , p, εt = (ε1t, ε2t, . . . , εnt)
T, in which εmt is the

residual of ym, m = 1, 2, . . . n.
Lag order can be elected using minimum value of

Akaike information criterion (AIC), Schwartz informa-
tion criterion (SIC), and Hannan–Quinn information
criterion (HIC) [47].

Ganger causality analysis, as proposed by Granger
[34], is effective to detect if one time series is useful
to predict another. yi is said to Granger cause yj if yi

makes significant contribution to the prediction of yj . It
can be measured by checking the joint influence of ϕji

(l)

on yj . For non-normal distribution, Wald test can be
performed where the statistics W = (SSER−SSEU )

SSEU/(T−2p−1) ∼
χ2

p under

Ho :
(l)
ϕji = 0, l = 1, 2, . . . , p (4)

against

H1 :
(l)
ϕji �= 0 for some l = 1, 2, . . . , p. (5)

If W is greater than the critical value at a specified
level of significance, the null hypothesis is rejected, i.e.,
we can interpret that yi Granger causes yj .

2.3 Nonlinear Granger causality analysis:
Diks–Panchenko test

Linear Granger causality analysis is ineffective to test
nonlinear causality between the variables. For this rea-
son, nonlinear granger causality analysis is to be per-
formed to find any significant nonlinear association
between the time series.

Diks–Panchenko test [35, 36, 48] is a modification of
the Himestra–Jones test [49] to TEST nonlinear Ganger

causality. If xt does not Ganger cause yt, then for the
corresponding random variables Xt and Yt,

Yt+1|
(
X lx

t ;Y ly
t

)
∼ Yt+1|Y ly

t , (6)

where X lx
t = (Xt−lx+1, . . . , Xt) and Y ly

t =(
Yt−ly+1, . . . , Yt

)
, lx and ly being lag of xt and yt,

respectively.
Remaining Zt = Yt+1 and denoting Wt =

(X lx
t , Y

ly
t , Zt), (6) can be rewritten as

Z|((X,Y ) = (x, y) ∼ Z|(Y = y), (7)

which implies that, under H0, i.e., assumption of non-
Granger causality of yt by xt,

fX,Y,Z(x, y, z)
fX,Y (x, y)

=
fY,Z(y, z)

fY (y)
, (8)

where f s are the corresponding probability density
functions.

(8) is equivalent to

fX,Y,Z(x, y, z)
fY (y)

=
fX,Y (x, y)

fY (y)
fY,Z(y, z)

fY (y)
. (9)

Himnestra and Jones used correlation-integral esti-
mator, of the form CW,n(ε) = 2

n(n−1)

∑ ∑
i<j IW

ij ,
where IW

ij = I(‖Wi − Wj‖ ≤ ε), ‖.‖ is the maximum
norm to each density function, to obtain

CX,Y,Z(ε)
CY (ε)

=
CX,Y (ε)
CY (ε)

CY,Z(ε)
CY (ε)

. (10)

But this is not true in general. As a result, Himnes-
tra and Jones test result faces severe size distortion
problem in many cases. Diks and Panchenko [35, 36,
48] incorporated a conditional dependence measure by
introducing a local weighting function g(x ,y ,z ) and
modified (9) as

Ho : q = E

[(
fX,Y,Z(x, y, z)

fY (y)
− fX,Y (x, y)

fY (y)
fY,Z(y, z)

fY (y)

)

× gX,Y,Z(x, y, z)
]

= 0. (11)

Under Ho,
(

fX,Y,Z(x,y,z)
fY (y) − fX,Y (x,y)

fY (y)
fY,Z(y,z)

fY (y)

)
van-

ishes and that is the reason for the expectation of[(
fX,Y,Z(x,y,z)

fY (y) − fX,Y (x,y)
fY (y)

fY,Z(y,z)
fY (y)

)
gX,Y,Z(x, y, z)

]

to be equal to 0. g(X,Y,Z) is not unique. Using
gX,Y,Z(x, y, z) = f2

Y (y) is advantageous, as it follows
normal distribution for the corresponding estimator
and asymptotic distribution of the test statistics is
obtained. For this value,
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Ho : q = E[fX,Y,Z(x, y, z)fY (y)
−fX,Y (x, y)fY,Z(y, z)] = 0 (12)

is incurred.
A natural estimator of q based on indicator function

is

Tn(ε) =
(2ε)−dx−2dy−dz

n(n − 1)(n − 2)

×
∑

i

⎡
⎣ ∑

k,k �=i

∑
j,j �=i

(
IXY Z
ik IY

ij − IXY
ik IY Z

ij

)
⎤
⎦,

(13)

where IW
ij = I(‖Wi − Wj‖ < ε).

Denoting local density estimators of a dW -
variate random variable W at Wi by f̂W (Wi) =
(2ε)−dW

n−1

∑
j,j �=i IW

ij , Tn(ε) is simplified as

Tn(ε) =
(n − 1)
n(n − 2)

∑
i

(f̂X,Y,Z(Xi, Yi, Zi)f̂Y (Yi)

− f̂X,Y (Xi, Yi)f̂Y,Z(Yi, Zi)). (14)

For a sequence of bandwidths εn of the form εn =
Cn−β , C > 0 and β ∈ (

1
4 ,13

)
, under suitable mixing

conditions [50], if the covariances between the local den-
sity estimators are taken into account, we can have

√
n

Tn(εn) − q

Sn
→ N(0, 1), (15)

where S2
n is a consistent estimator of asymptotic vari-

ance of Tn(εn).
Ho is rejected at a preassigned significance level α if√
nTn(εn)−q

Sn
> z1−α.

2.4 Generalized forecast error variance
decomposition test

Granger causality is useful only to predict the causal
relationship between two variables, but quantitative
measurement of the degree of exogeneity or endogene-
ity is not computed by it. One approach to measure
the degree of dependency of the variables is generalized
forecast error variance decomposition (GFEVD) analy-
sis, suggested by Koop et al. [37] and Pesaran and Shin
[38]. Forecast error variance decomposition defined as
the contribution to the forecast error variance of each
variable is accounted for by shocks to all variables in the
system. It explains how much percentage of fluctuation
of a variable is accounted for by variance of shocks in
other variables. For an exogenous variable in a system in
a VAR(p) model, own shocks will explain all of its fore-
cast error variance [51]. In addition, it detects which of
the independent variables is more important in explain-
ing the variability in the dependent variables over time.

Generalized variance decomposition is unique and inde-
pendent of the ordering of the variables. It also mea-
sures contemporaneous shock effects which is an advan-
tage over orthogonal variance decomposition.

The moving average representation of a VAR(p)
model, Φ(L)yt = εt, is given by

Yt = Φ−1(L)εt = Ψ(L)εt, (16)

where Ψ(L) = In + Ψ1L + Ψ2L
2 + · · ·

Ψis can be computed from the identity

Φ(L)Ψ(L) =

(
In −

p∑
i=1

ΦiL
i

)(
In +

∞∑
i=1

ΨiL
i

)
= In.

(17)

Using (17), (16) can be remodeled as

Yt =
∞∑

l=0

Ψlεt−l.

Forecast error of predicting Yt+s conditional on infor-
mation available at t is

et+s = Yt+s − Et(Yt+s) =
s−1∑
l=o

Ψlεt+s−l. (18)

The total forecast error covariance is

Cov(et+s) =
s−1∑
l=o

Ψl

∑
Ψ′

l. (19)

Now, the forecast error of predicting Yt+s conditional
on information available at t is given by

ei
t+s =

s−1∑
l=0

Ψlεt+s−l − E(εt+s−1|εi,t+s−l), (20)

assuming the future shocks to the i -th variable at time
t , t + 1 , . . . t + s − 1 are εi,t,εi,t+1,εi,t+2, . . . , εi,t+s−1,
respectively.

Assumption of εt following a multivariate normal dis-
tribution derives that [32]

E(εt|εit = δi) = (σ1i, σ2i, . . . , σni)
′
σ−1

ii δi =
∑

eiσ
−1
ii δi,

(21)

ei being n × 1 matrix with the i -th element unity and
other elements zero, where δj = √

σjj , i.e., one-unit
standard deviation shock. So, forecast error covariance
of ei

t+s is given by
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Cov
(
ei
t+s

)
=

s−1∑
l=o

Ψl

∑
Ψ′

l

− σ−1
ii

(
s−1∑
l=0

Ψl

∑
eie

′
i

∑
Ψ′

l

)
, (22)

Hence, the change in the s-step forecast error vari-
ance of Yt+s applying condition on future shocks to the
i -th variable is given by

Δis = σ−1
ii

(
s−1∑
l=0

Ψl

∑
eie

′
i

∑
Ψ′

l

)
, (23)

which implies that the s-step ahead forecast error vari-
ance decomposition of the i -th variable attributable to
shocks for the j -th variable is given by

θg
ij,s =

σ−1
ii

∑s−1
l=0 (e′

iΨl

∑
ej)

2

∑s−1
l=0 (e′

iΨl

∑
Ψ′

lej)
. (24)

3 Results

3.1 Analysis of data for the pre-COVID period

3.1.1 Descriptive statistics

Table 1 describes the preliminary statistical attributes
of log return data corresponding to the daily closing
value of stock indices from July 1, 2018 to December 31,
2020 and from January 1, 2020 to June 30, 2021 respec-
tively. In this pre-COVID period (sample size 227),
TASE exhibits highest central return (M 0.002, MD
0.002), but with high uncertainty (SD 0.016) and riskier
market to invest. BIST 100 is low-returning index (M
− 0.0009) with high fluctuation (SD 0.14), whereas
IBEX 35 is low-returning index (MD − 0.00002) with
less volatility (SD 0.008). Hence, IBEX is compara-
tively safer to invest, though the return may be less.
NYSE composite is least risky (SD 0.009) and B3 is
the highest fluctuating index (SD 0.021). It is also evi-
dent from Jarque–Bera test that all the selected series
follow non-normal distributions, except higher volatile
markets TASE and B3. All exchanges except BSE, LSE
and TASE are positively skewed emphasizing faster rate
of decrease to the right of the peak for these three
exchanges. All stock markets are leptokurtic in nature,
having sharper peak than normal distribution, show-
ing that the rate of change of price is higher in all the
exchanges.

In the COVID-affected period (sample size 241),
TASE preserves its highest value in terms of median
(MD 0.001979) with high fluctuation 0.029684. It indi-
cates that, though TASE generates higher return in
the middle of the COVID-affected period, it has a
volatile tendency. BIST 100 exhibits the highest mean

by 0.018219 with more uncertainty (SD 0.297031).
So, BIST 100 also follows high-risk–high-return strat-
egy. SMI is the least fluctuated index (SD 0.013891)
and more stable market. LSE is possibly the most
volatile (SD 0.299213) and low-returning market (M
− 0.019628), making it a very risky market to invest.
LSE and TASE exhibit negative skewness affirming the
tendency of faster declination of these markets from
the peak. The nature of BSE changed from negatively
skewed to positively skewed in this period. This obser-
vation points that BSE is more persistent near its
peak during the COVID-affected period. Kurtosis in the
COVID-affected period is positive and much more than
that in the pre-COVID period, for all the exchanges.
This clearly enhances the greater rate of change in
price in COVID-affected period, confirming much more
volatility in this period. All the markets follow non-
normal distribution in the COVID-affected period.

3.1.2 Correlation

Correlation measures the co-movement of stock mar-
kets in a time period. It is a crude estimation of linear
dependency between them. It is established from Table
2 that all the correlations are positive, which enhances
the chance of simultaneous movement of these stock
markets in the same direction before the COVID pan-
demic, emphasizing possible linear relationship among
these stock exchanges. There is strong positive corre-
lation between AEX-BEL 20, AEX-FTSE MIB, AEX-
IBEX 35, AEX-OMX 30, AEX-SMI, BEL20-CAC40,
BEL 20-FTSE MIB, BEL 20-OMX 30, BEL 20-SMI,
CAC 40-FTSE MIB, CAC 40-IBEX 35, CAC 40-OMX
30, CAC 40-SMI, FTSE MIB-IBEX 35, FTSE 35-OMX
30, FTSE 35-SMI, IBEX 35-OMX 30, IBEX 35-SMI
and OMX 30-SMI. Almost all the correlations were pos-
itive in the COVID-affected period too, except for B3
and AEX, B3 and BIST 100, B3 and CAC 40, B3 and
IBEX 35, B3 and NYSE composite, B3 and SMI, OMX
30 and AEX, OMX 30 and LSE, and BIST100 and
TASE. In this period, most of the strong positive corre-
lations during the pre-COVID period are preserved in
the likes of AEX-BEL 20, AEX-FTSE MIB, AEX-IBEX
35, AEX-SMI, BEL20-CAC40, BEL 20- FTSE MIB,
BEL 20-SMI, CAC 40-IBEX 35, CAC 40-SMI, FTSE
MIB-IBEX 35 and FTSE MIB-SMI. In addition, AEX-
NYSE composite, BEL 20-IBEX 35, CAC 40-NYSE
composite, FTSE MIB-NYSE composite joined the list.
BIST 100, B3, BSE SENSEX, LSE, NYSE composite
and TASE do not show significant correlation with any
other stock exchanges, indicating possible gain of inter-
national diversification.

3.1.3 Stationarity test: ADF unit root test

As stationarity condition is prior assumption for a vec-
tor autoregression (VAR) model, ADF unit root test is
applied to each individual series to check it during the
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Table 3 ADF unit root test result for log return data

Stock exchange Pre-COVID period COVID-affected period Conclusion

Lag p value t stat value Lag p value t stat value

AEX 1 0.00* − 11.3897 16 0.00* − 4.69 Stationary

BEL 20 1 0.00* − 11.801 13 0.00* − 6.04 Stationary

BIST 100 0 0.00* − 14.4402 0 0.00* − 15.37 Stationary

B3 0 0.00* − 15.5061 2 0.00* − 9.53 Stationary

BSE
SENSEX

2 0.00* − 9.43279 6 0.00* − 5.83 Stationary

CAC 40 2 0.00* − 10.0048 5 0.00* − 7.49 Stationary

FTSE MIB 0 0.00* − 15.0449 11 0.00* − 5.86 Stationary

IBEX 35 2 0.00* − 10.3987 5 0.00* − 7.43 Stationary

LSE 2 0.00* − 9.90058 0 0.00* − 15.46 Stationary

NYSE composite 3 0.00* − 8.88172 9 0.00* − 4.88 Stationary

OMX 30 16 0.00* − 4.27342 7 0.00* − 6.45 Stationary

SMI 1 0.00* − 12.0325 8 0.00* 0.00 Stationary

TASE 2 0.00* − 9.1552 6 0.00* − 7.38 Stationary

* denotes rejection of the hypothesis at the 0.01 level

COVID-affected period. The presence of unit root con-
firms that the series is nonstationary. Table 3 summa-
rizes the result confirming that all the series are station-
ary at 1% level of significance. Lag length was selected
comparing minimum value between Akaine informa-
tion criterion (AIC) and Schwartz information criterion
(SIC). Bartlett kernel and Newey–West bandwidth was
used. Linear deterministic trend was assumed. It is to
be mentioned that, as the series are different, different
lags are obtained. All the lags have increased during
COVID-affected period except LSE and OMX 30. This
signifies that almost all the stock exchanges became
more dependent on the past values of its own return.

3.1.4 Linear Granger causality test

As ADF unit root test result supports the assumption
of stationarity of each variable, a vector autoregres-
sion (VAR) model, comprising all the 13 stock market
indices, in the pre-COVID period, is created to under-
stand movement of all the markets together. Optimal
lag length is measured according to minimum among
Akaine information criterion (AIC), Schwartz informa-
tion criterion (SIC) and Hannan–Quinn information
criterion (HIC) and was found to be 15. As most of the
variables do not satisfy the normality condition (Table
1), Granger causality–Wald test is performed to check
the existence of unidirectional or bidirectional causality
among the stock markets. Table 4 describes the result.
Only those relationships which were found as statisti-
cally significant with 5% level of significance are shown.
p value of less than equal to 0.05 for a pair implies
that the corresponding independent stock market lin-
early Granger cause the corresponding dependent stock
market.

It is evident from Table 4 that there is a sufficient
number of linear causal relationships (72 out of possi-
ble 156) in the system. It is revealed that B3, NYSE
composite and TASE are not granger caused by any
stock market, implying that they are exogenous mar-
kets. Among these, B3 causes only two markets and
hence B3 behaves almost indifferently in this period of
study. On the other side, BIST 100 notably influences
nine indices and hence plays a key role in this causal-
ity analysis. SMI is caused by only BIST 100. CAC
40, being affected by all other markets, is an endoge-
nous stock market. BIST 100, BSE SENSEX, IBEX 35,
LSE, NYSE composite, SMI and TASE have impact on
AEX; AEX, BIST 100, IBEX 35 and TASE make sig-
nificant contribution to the prediction of BEL 20; CAC
40, IBEX 35 and SMI Granger cause BIST 100; AEX,
BEL 20, BIST 100, CAC 40, IBEX 35, LSE, OMX 30
and TASE has a Granger cause effect on BSE SENSEX;
FTSE MIB is affected by all markets except NYSE com-
posite and OMX 30, whereas LSE and OMX 30 are
influenced by all indices, but AEX and B3 and B3 and
BSE SENSEX respectively. On IBEX 35, AEX, BEL 20,
BIST 100, FTSE MIB, LSE, SMI and TASE have signif-
icant impact. In brief, bidirectional causality is observed
between AEX ↔ BSE SENSEX, AEX ↔ IBEX 35, BEL
20 ↔ IBEX 35, BIST 100↔ CAC 40, BIST 100 ↔ IBEX
35, BIST 100 ↔ SMI, BSE SENSEX ↔ CAC 40, BSE
Index ↔ LSE, CAC 40 ↔ FTSE MIB, CAC 40 ↔ LSE,
CAC 40 ↔ OMX 30, FTSE MIB ↔ IBEX 35, FTSE
MIB ↔ LSE, IBEX 35 ↔ LSE and LSE ↔ OMX 30;
unidirectional causality is running from AEX → BEL
20, AEX → CAC 40, AEX → FTSE MIB, AEX →
OMX 30, BEL 20→ BSE SENSEX, BEL 20 → CAC
40, BEL 20 → FTSE MIB, BEL 20 → LSE, BEL 20
→ OMX 30, BIST 100 → AEX, BIST 100 → BEL 20,
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BIST 100 → BSE SENSEX, BIST 100 → FTSE MIB,
BIST 100→ LSE, BIST 100 → OMX 30, B3 → CAC 40,
B3→ FTSE MIB, BSE SENSEX → FTSE MIB, FTSE
MIB → NYSE composite, IBEX 35 → BSE SENSEX,
IBEX 35→ CAC 40, IBEX 35 → OMX 30, LSE →
AEX, NYSE composite → AEX, NYSE composite →
CAC 40, NYSE composite → IBEX 35, NYSE compos-
ite → LSE, NYSE composite → OMX 30, OMX 30→
BSE SENSEX, SMI → AEX, SMI → CAC 40, SMI
→ FTSE MIB, SMI → IBEX 35, SMI → LSE, SMI
→ OMX 30, TASE → AEX, TASE → BEL 20, TASE
→ BSE SENSEX, TASE → CAC 40, TASE → FTSE
MIB,TASE → LSE and TASE → OMX 30.

For the COVID-affected period, computed optimal
lag is 16 and a VAR (16) model is created. As no
variable satisfies normality condition (Table 1), again
Granger causality-Wald test is used to investigate
causality among the variables (Table 4). It is clear from
Table 4 that the number of linear causal relationships
reduced noticeably in the COVID-affected period (21
out of possible 156 linear causal relationships). There
are a number of exogenous markets: BIST 100, BSE
SENSEX, FTSE MIB, LSE, SMI and TASE. LSE, mak-
ing impact on five indices plays a key part in this time
frame. B3, caused by 11 indices, is most endogenous
in this period. On the other part, exogenous indices
FTSE MIB and TASE influence only B3. Hence, these
two markets are almost indifferent in this system. Bidi-
rectional linear causality is observed only between B3↔
NYSE composite, whereas unidirectional linear causal-
ity happens between AEX → B3, BEL 20→ B3, BIST
→ B3, BIST → NYSE composite, BSE SENSEX → B3,
CAC 40→ B3, FTSE MIB → B3, LSE → AEX, LSE
→ B3, LSE → CAC 40, LSE → NYSE composite, LSE
→ OMX 30, OMX 30→ BEL 20, OMX 30→ B3, OMX
30→ CAC 40, OMX 30→ IBEX 35, SMI → B3 and
TASE → B3.

3.1.5 Nonlinear Granger causality test

As linear granger causality test is unable to capture
nonlinear causal relationship among variables, pair-
wise bivariate nonlinear granger causality test, illus-
trated by Diks and Panchenko [35, 36], is performed
for the pre-COVID period and the result is given in
Table 5. Optimal lag length of each pair is assessed
according to minimum between Akaike information cri-
terion (AIC) and Schwartz information criterion (SIC).
Embedding dimension is set to the lag length increase
by 1. The value of β, in the bandwidth ε = Cn−β in
Diks–Panchenko test, is taken as 2

7 , as for this choice
of β, mean squared error of the estimator is asymptot-
ically least. Covariance between conditional concentra-
tions for a bivariate series arises mainly to volatility and
for estimation of the autoregressive heteroskedasticity
model (ARCH), C is taken as 8. If the sample size is
small, the bandwidth may be high which would pro-
duce erroneous calculation. Hence, the upper bound of
the bandwidth is fixed as 1.5, i.e., ε = max(8n− 2

7 , 1.5).

It is found that the number of nonlinear Granger
causal relationship in the pre-COVID period is much
lesser than the number of linear Granger causal rela-
tion (20 compared to 72). BIST 100, B3, BSE SEN-
SEX, LSE and TASE are exogeneous stock markets.
Also, BIST 100, B3, LSE and TASE do not have any
significant impact on any of the indices. Hence, these
markets behave neutrally. B3 and TASE are also exo-
geneous when linear Granger causality is performed.
Hence, these two markets exhibit most exogeneity by
causality analysis in the pre-COVID time span. NYSE
composite shows exogeneity according to linear granger
causality, but it is nonlinearly caused by BSE SEN-
SEX, CAC 40, OMX 30 and SMI. AEX and BEL 20
are impacted by CAC 40 and NYSE composite, respec-
tively. CAC 40 is notably nonlinearly affected by NYSE
composite and SMI; FTSE MIB is nonlinearly induced
by CAC 40 and SMI; IBEX 35 is driven by AEX, CAC
40, NYSE composite and SMI; OMX 30 is influenced
by BSE SENSEX, CAC 40, NYSE composite and SMI;
SMI is impacted by AEX and NYSE. In brief, bidirec-
tional nonlinear causality exists between CAC 40 ↔
NYSE composite, NYSE composite ↔ OMX 30 and
NYSE composite ↔ SMI and unidirectional nonlinear
granger causality is established between AEX → IBEX
35, AEX → SMI, BSE SENSEX → NYSE composite,
BSE SENSEX → OMX 30, CAC 40 → AEX, CAC 40→
FTSE MIB, CAC 40→ IBEX 35, CAC 40 → OMX 30,
NYSE composite → BEL 20, NYSE composite → IBEX
35, SMI → CAC 40, SMI → FTSE MIB, SMI → IBEX
35 and SMI → OMX 30.

Diks–Panchenko test is repeated on stock indices
log return data in the COVID-affected period and the
result is shown in Table 5. Table 5 suggests that the
number of nonlinear Granger causal relationship is in
fact raised in the COVID-affected period (32 compared
to 21). BIST 100, B3 and BSE SENSEX are exoge-
nous stock markets in the COVID-affected period. BSE
behaves indifferently in the COVID-affected period as
it does not show sign of any impact on other indices.
NYSE composite continues to be an endogenous mar-
ket as it is influenced by seven markets. Another exoge-
nous exchange in the pre-COVID period, namely, TASE
is endogenous in this period. CAC 40 remains to be
crucial important stock market influencing six mar-
kets. OMX 30 strengthens its importance in the post-
COVID period causing six markets nonlinearly. In the
COVID-affected period, bidirectional nonlinear causal-
ity is observed between AEX ↔ TASE, BEL 20 ↔
TASE, CAC 40 ↔ OMX 30, CAC 40 ↔ TASE, NYSE
composite ↔ SMI, NYSE composite ↔ TASE, unidi-
rectional nonlinear causality is found between AEX →
SMI, BEL 20 → AEX, BEL 20 → FTSE MIB, BEL 20
→ NYSE composite, BEL 20 → SMI, CAC 40 → FTSE
MIB, CAC 40 → IBEX 35, CAC 40 → NYSE compos-
ite, CAC 40 → SMI, FTSE MIB → NYSE composite,
IBEX 35 → FTSE MIB, IBEX 35 → NYSE composite,
IBEX 35 → SMI, NYSE composite → AEX, OMX 30
→ AEX, OMX 30 → FTSE MIB, OMX 30 → IBEX
35, OMX 30 → NYSE composite, OMX 30 → TASE
and SMI → TASE.
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3.1.6 Variance decomposition analysis

Generalized variance decomposition analysis is gener-
ated over a span of 100 periods to measure the degree
of exogeneity both in short term and long term. Gen-
eralized variance decomposition is used to nullify the
impact of the ordering of the innovative variables on
the explained forecast error variance of the dependent
variable. As covariance between original shocks may not
be zero, total forecast error variance may not be 100%.
Variances are standardized to get a better idea about
the impact of different shock on a dependent market.
Outcome for only the 1st, 10th, 50th and 100th period
is shown in Table 6 for the pre-COVID period and Table
7 for the COVID-affected period. In the present study,
the 1st and 10th period is considered as short term and
50th and 100th period is considered as long term. As
13 stock markets are considered, we fix that an innova-
tion of stock market is important to describe another
stock market if the forecast error variance is more than
100/13 = 7.69%.

It is evident from Table 6 that TASE is the most
exogenous stock market in the pre-COVID era for short
term as forecast error variance of it is explained most
(71.08%) by its own innovation. BIST (66.92%) and
BSE SENSEX (66.26%) also shows sign of exogene-
ity. These findings support nonlinear Granger causal-
ity analysis. Error variance of BSE SENSEX is not
described significantly by innovation of any other mar-
ket in the pre-COVID period for the short term. In the
long term, BEL 20 (23.58%) is most exogenous. In the
pre-COVID period, CAC 40 is most endogenous in the
short term as its own innovation explains least percent-
age of forecast error variance (18.11%). This interpreta-
tion coincides with linear Granger causality analysis. In
the long term, OMX 30, explaining only 2.98% forecast
variance by own innovation, is most endogenous.

It can be inferred from Table 7 that, for the COVID-
affected period, in the short term, TASE, 64.43% of
whose forecast error variance is attributable to its own
innovation, continues to be the most exogenous stock
market and CAC 40, explaining only 18.90% of its
error variance by self-innovation and maintaining its
endogeneity. In the long term, SMI (18.13%) is the
most exogenous market. BSE SENSEX, exogenous in
pre-COVID era, changes its characteristic to be most
endogenous market in as only 4.43% of its variance is
attributable to itself.

The accountability of the independent stock
exchanges, for the variation of dependent stock mar-
kets, is summarized in Table 8, for easy understanding
of the reader. It can be comprehended that innovation
in independent stock markets is more responsible for
explaining variation of dependent markets in the long
run, compared to short run, both in the pre-COVID
and COVID-affected period.

4 Discussion

The attempt of the present study is to investigate and
analyze the change in economic relationship among the
prime stock markets of the countries which are heav-
ily affected by coronavirus, either by total number of
cases or by number of cases per one million population
till June 30, 2021. The present work has certain clear
novelty in its strategic analysis and implementation.
Firstly, we have selected and categorized fiscally promi-
nent and impacted countries by means of two different
perspectives, viz., by the gross total number of infected
cases and by the concentration of infected cases. If we
only select the countries by means of the first con-
sideration, obviously some less populated but severely
impacted countries would have been missed. Secondly,
choice of intervals in the pre-COVID period and within
the COVID period is very important and sensitive. We
have taken a balanced approach by selecting uniform
lengths of time intervals in the pre-COVID and COVID
period for all the considered indices. This certainly gives
parity in the analysis zone and we expect to have a more
reliable analysis under these uniform comparative time
zones. TASE maintains its high return in terms of high-
est median in both the periods, but BIST, which had
low return before COVID, performs remarkably well in
the midst of COVID producing high return. It should be
mentioned that fluctuation in COVID-affected period
has increased drastically for almost all the markets,
which is consistent with the study by Samadder and
Bhunia [18]. As there is uncertainty and worry about
the time frame of the pandemic to end and many waves
of the pandemic has been generated over time one after
another amidst a relatively shorter time frame of sta-
bility of the daily COVID-infected cases, most markets
seem to be volatile. This result also indicates that the
higher return rate may not be stable in long term. B3
and TASE, the only markets satisfying normality cri-
teria in the pre-COVID period, shifted to non-normal
category in this pandemic, adding complexity to the
system.

Descriptive statistics prevails that, in the pre-COVID
period, TASE is detected with highest central return,
but with high uncertainty. High-risk–high-return strat-
egy should be followed in this exchange. BIST 100 is
low-returning high fluctuating and IBEX 35 is low-
returning less volatile index. Hence, IBEX is a com-
paratively safer place to invest, though return may
be less. NYSE composite is least risky and B3 is the
highest fluctuating index. All the selected series except
higher volatile exchanges B3 and TASE follow non-
normal distributions. All exchanges except BSE, LSE
and TASE are positively skewed, emphasizing faster
rate of decrease to the right of the peak for these
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three exchanges, supporting the claim that the high-
est central return of TASE is not stable indeed. Kur-
tosis analysis confirms that all the exchanges are lep-
tokurtic in nature, confirming the rate of change of
price is higher in all the exchanges. During the COVID-
affected period, TASE maintained its highest central
value in the median associated with high fluctuation.
It clarifies that, though TASE generates higher return
in the middle of the COVID-affected period, it is still a
riskier place to invest and high-risk–high-return strat-
egy should be continued. BIST 100 exhibits the highest
mean with more uncertainty. BIST follows the same
trend like TASE. SMI has the least fluctuated index
and low risk is associated with this market. LSE is pos-
sibly the most volatile and low-returning market. So, it
is advisable for the investor to be very careful to invest.
LSE and TASE exhibit negative skewness affirming the
tendency of faster declination of these markets from the
peak. The nature of BSE has been shifted from nega-
tively skewed to positively skewed in this period. This
observation suggests that BSE is more persistent near
its peak during the COVID-affected period. Kurtosis in
the COVID-affected period is much more positive com-
pared to the pre-COVID period, for all the exchanges.
This clearly signifies that change of stock prices devi-
ates at a greater pace in the COVID-affected period,
affirming more volatility in this period, compared to
the pre-COVID period.

Correlation analysis indicates that, in the pre-
COVID period, all the markets were positively corre-
lated hinting at a possible linear relationship among
them. In the COVID-affected period, B3, the most
fluctuating market, before the pandemic, follows co-
movement in reverse direction compared to almost
all other markets. BIST100, B3, BSE SENSEX, LSE,
NYSE composite and TASE do not have any significant
correlation with other markets in both the pre-COVID
and COVID-affected period. Hence, international diver-
sification is strongly recommended in this COVID pan-
demic too to take advantage of possible gain.

All the markets are stationary in both the periods,
but increase of lag length of individual stock mar-
kets in the COVID-affected period indicates a possi-
ble mark of more intra-dependency of present market
returns with previous returns in pandemic. It is evident
from Figs. 1 and 2 that the number of linear causal
relationships among stock markets reduced drastically
(21 in the COVID-affected period vs. 72 in the pre-
COVID period, out of a possible 156 relationships) in
the COVID-affected period which is a very important
finding in this study. It is also reflected in the anal-
ysis that the number of exogenous stock markets in
the COVID-affected period (BIST 100, BSE SENSEX,
FTSE MIB, LSE, SMI and TASE) doubled from the
pre-COVID period (B3, NYSE composite and TASE).
In this pandemic, markets are behaving more and more
independently in the linear sense, along with increas-
ing intra-dependency with its own lags. Linear interde-
pendency of markets is reduced, as economic exchange
among the countries has been shattered for a long

period now. TASE, the highest returned and signifi-
cantly uncorrelated index, is an exogenous market in
both periods as far as linear causality is concerned. This
market has stopped causing almost all other markets in
the pandemics. But, B3, which was exogenous in the
pre-COVID period, turned out to be endogenous in the
COVID-affected duration which is another interesting
outcome from our study. According to the IMF Foreign
Trade forecast, the volume of imports of goods and ser-
vices is expected to increase by 12.5% in Brazil in 2021
[52]. Maybe this makes B3 depend on investment from
other countries. NYSE composite, another exogenous
market in the pre-COVID period by linear causal anal-
ysis, is endogenous in the COVID-affected period as it
is influenced by seven markets during this time. LSE,
in five countries, plays a key part in linear causal anal-
ysis in the COVID-affected period. On the other handt,
exogenous indices FTSE MIB do not make any impact
on other markets except B3.

It is evident from Fig. 3 that nonlinear causal rela-
tionship has been increased (32 in the COVID-affected
period compared to 21 in the pre-COVID period)
remarkably during the COVID-affected period. COVID
has made the underlying dynamics of the economic
causal relationship move more toward nonlinearity.
BIST 100, B3 and BSE SENSEX, all of which were
exogenous in the pre-COVID nonlinear causal analy-
sis, preserved their exogeneity in the COVID-affected
period, too. BIST 100 and BSE SENSEX were exoge-
nous in the COVID-affected linear causality analysis
also. Hence, BIST 100 and BSE SENSEX are found to
be exogenous markets in the COVID-affected period for
both linear and nonlinear causal analysis. This explains
the much more stable market conditions of these mar-
kets without being much bothered about the COVID
situation in other countries. On the contrary, TASE,
which was exogenous in the pre-COVID period, trans-
forms to the endogenous market while nonlinear causal-
ity is concerned. CAC 40 is established to be a vital
stock market in the COVID-affected period influenc-
ing six markets. OMX 30 raises its importance in the
COVID-affected period making impact on six markets
compared to only one before the pandemic.

General forecast error variance decomposition analy-
sis confirms that TASE is an exogenous market, both in
the pre-COVID period and the COVID-affected period.
So, TASE is the most exogenous stock market in the
pre-COVID period in the short term combining all anal-
yses. But the notable finding is that TASE is fore-
casted to depend heavily on other markets in the long
term after the pandemic was over, which is supported
by its changing pattern in nonlinear causality analy-
sis. TASE, being the only public stock exchange in
Israel, is able to cope up with COVID as investors have
no other option to diversify their capitals across other
exchanges in Israel. That explains its exogeneity and
neutral nature in this period. But COVID has forced
it to depend on other countries nonlinearly and also in
the long term in future.CAC 40 also is the most endoge-
nous market in the short term for both the pre-COVID
and COVID-affected period according to its variance
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Fig. 1 Pictorial
representation of linear
Granger causality-Wald test
based on VAR (15) model
for log return data
(pre-COVID period)

AEX

TASE

BEL20                                                                                   SMI

BIST 100 OMX  30

B3                                 NYSE Composite

LSE

SENSEX                                                                                                                       

CAC40                                                                              IBEX 35

FTSE MIB

Fig. 2 Pictorial
representation of linear
Granger causality-Wald test
based on VAR (16) model
for log return data
(COVID-affected period)
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BIST 100 OMX  30

B3                                                                                                                           NYSE Composite

LSE

SENSEX                             CAC 40                            FTSE MIB          IBEX 35                               

decomposition. This study matches with pre-COVID
linear causality analysis. BIST 100 and BSE SENSEX
is found to be exogenous in the pre-COVID short-
term period agreeing with nonlinear causality analysis.
BSE SENSEX tends to be exogenous in the short term
for the COVID-affected period too, according to the
findings from causality analysis. Interest rate in banks
and other government-backed investment schemes are

declining day by day in India, compelling the potential
investors to invest in stock markets making it exogenous
for the time being, irrespective of the situation of other
foreign stock markets. Hence, it can be interpreted that
the exogenous nature of BSE SENSEX may change in
the distant future. In fact, variance decomposition anal-
ysis shows that association among the markets are more
in the long term compared to short term, both in the
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Fig. 3 Pictorial
representation of pairwise
nonlinear Granger
causality-Diks–Panchenko
test for log return data
(pre-COVID period and
COVID-affected period)
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SENSEX                             CAC 40                            FTSE MIB          IBEX 35                               

pre-COVID and COVID-affected period. Hence, it may
be understood that COVID may not hamper the asso-
ciation of the stock exchanges in the long run, and mar-
kets are expected to regain long-term association once
the effect of COVID fades away.

5 Conclusion

In brief, the COVID pandemic may have changed the
underlying relationship among prime stock markets of
most affected countries. Some exogenous stock markets
may have become endogenous and vice versa in the
pandemic. Linear relationship may have been reduced
drastically in the COVID-affected period and nonlin-
ear relationship possibly enhanced. Most of the coun-
ties may have become independent markets for the time
being, though there is prediction of the recovery of the
inter-relationship in future. It is advisable to maintain
international diversification to enjoy possible gain in
this pandemic-affected time. To sum up, the present
work indicates an emergence of a new market dynamics
in the pan world level. A very important interrogation
in this aspect is the sustainability of these newer pat-
terns and trends. Some analyses regarding the persis-
tence have been performed here. A more comprehensive
and reliable study can be made upon the availability of
more data size.

References

1. C. Wang, J. Han, Will the COVID-19 pandemic
end with the Delta and Omicron variants? [Editorial]
Environ. Chem. Lett. (2022). https://doi.org/10.1007/
s10311-021-01369-7

2. A. Gowrisankar, T. Priyanka, S. Banerjee, Omicron:
a mysterious variant of concern. Eur. Phys. J. Plus
137(1), 100 (2022)

3. L. Wang, G. Cheng, Sequence analysis of the emerging
SARS-CoV-2 variant Omicron in South Africa. J. Med.
Virol. 94(4), 1728 (2022)

4. D. Easwaramoorthy, A. Gowrisankar, A. Manimaran, S.
Nandhini, L. Rondoni, S. Banerjee, An exploration of
fractal-based prognostic model and comparative analy-
sis for second wave of COVID-19 diffusion. Nonlinear
Dyn. 106(2), 1375 (2021)

5. M. Cadoni, G. Gaeta, G, Size and timescale of epidemics
in the SIR framework. Phys. D 411, 132626 (2020)
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