Skip to main content

Advertisement

Log in

Effect of low energy ion irradiation on TiO\(_{2}\)-based hybrid nanostructures for enhanced photocatalytic activity

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Low energy ion-irradiated hybrid nanostructures with altered interfaces have sparked a lot of interest in the field of photocatalytic applications. In context to that, the present work on low energy ion (LEI) irradiation at different fluences is carried out to study the modification in TiO\(_{2\, }\)hybrids and hence their photocatalytic studies. LEI is carried out using 50 keV of P ions for TiO\(_{2}\) nanorods (TiNRs)-based hybrids (Ag-TiNRs and Au-TiNRs) at different fluences to induce structural, morphological, and interfacial changes. It is found that these hybrid nanostructures get modified at low fluence (5X10\(^{14\, }\)ions/cm\(^{2})\), whereas at higher fluence (5X10\(^{15\, }\)ions/cm\(^{2})\), their morphologies are damaged. These changes are studied using Micro-Raman spectroscopy. The analysis revealed that the blue shift in the E\(_{g}\) mode of LEI hybrids is attributed to compressive strain, which introduces defects in the TiO\(_{2}\) nanostructures. The X-ray photoelectron spectroscopy analysis reveals the formation of the Schottky barrier with a shift towards the lower binding energy and this is credited to interfacial interaction and separation of charges at the interfaces. The effects of structural and interfacial modifications of LEI hybrids are further studied for electrochemical and photocatalytic analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated or analysed during this study are included in this published article.]

References

  1. P. Bamola, B. Singh, A. Bhoumik, M. Sharma, C. Dwivedi, M. Singh, G.K. Dalapati, H. Sharma, ACS Appl. Nano Mater. 3, 10591–10604 (2020)

    Article  Google Scholar 

  2. D. Maarisetty, S.S. Baral, J. Mater. Chem. A 8, 18560–18604 (2020)

    Article  Google Scholar 

  3. S.S. Li, H.T. Do, J.H. Kim, Appl. Surf. Sci. 573, 151383 (2022)

    Article  Google Scholar 

  4. S. Lettieri, M. Pavone, Materials 15, 1271 (2022)

    Article  ADS  Google Scholar 

  5. Q. Wu, F. Huang, M. Zhao, J. Xu, J. Zhou, Y. Wang, Nano Energy 24, 63–71 (2016)

    Article  Google Scholar 

  6. A. Farooq, S.O. Aisida, A. Jalil, C.F. Dee, J. Alloy Compd. 863, 158635 (2021)

    Article  Google Scholar 

  7. S. Oh, H. Ha, H. Choi, C. Jo, J. Cho, H. Choi, R. Ryoo, H.Y. Kim, J.Y. Park, J. Chem. Phys. 151, 234716 (2019)

    Article  ADS  Google Scholar 

  8. Y. Zhang, W.J. Weber, Appl. Phys. Rev. 7, 041307 (2020)

    Article  ADS  Google Scholar 

  9. J.B. Wallace, L.B.B. Aji, L. Shao, S.O. Kucheyev, Sci. Rep. 7, 17574 (2017)

    Article  ADS  Google Scholar 

  10. H. Zhao, F. Pan, Y. Li, J. Mater. 3, 17–32 (2017)

    ADS  Google Scholar 

  11. S. Jayashree, M. Ashokkumar, Catalysts 8, 1–26 (2018)

    Article  Google Scholar 

  12. P. Bamola, M. Sharma, C. Dwivedi, B. Singh, S. Ramakrishna, G.K. Dalapati, H. Sharma, Mater. Sci. Eng. B 273, 115403 (2021)

    Article  Google Scholar 

  13. E.A. Dawi, G. Rizza, M.P. Mink, A.M. Vredenberg, F.H.P.M. Habraken, J. Appl. Phys. 105, 074305 (2009)

    Article  ADS  Google Scholar 

  14. M. Berdakin, G. Soldano, F.P. Bonafe, V. Liubov, B. Aradi, T. Frauenheim, C.H. Sanchez, Nanoscale 14, 2816–2825 (2022)

    Article  Google Scholar 

  15. A.P. Manuel, K. Shankar, Nanomaterials 11, 1249 (2021)

    Article  Google Scholar 

  16. P. Bamola, C. Dwivedi, A. Gautam, M. Sharma, S. Tripathy, A. Mishra, H. Sharma, Appl. Surf. Sci. 511, 145416 (2020)

    Article  Google Scholar 

  17. B.R. Bade, S. Rondiya, S.R. Bhopale, N.Y. Dzade, M.M. Kamble, A. Rokade, M.P. Nasane, M.A. More, S.R. Jadkar, A.M. Funde, SN Appl. Sci. 1, 1073 (2019)

    Article  Google Scholar 

  18. A. Kumar, P. Choudhary, A. Kumar, P.H.C. Camargo, V. Krishnan, Nano Micro Small 18, 2101638 (2022)

    Google Scholar 

  19. U. Diebold, N. Ruzycki, G.S. Herman, A. Selloni, Catal. Today 85, 93–100 (2003)

    Article  Google Scholar 

  20. X. Zhang, H. Gao, X. Li, Ext. Mech. Lett. 22, 131–137 (2018)

    Article  Google Scholar 

  21. G. Abadias, E. Chason, J. Keckes, M. Sebastiani, G.B. Thompson, E. Barthel, L. Gary, C.E. Murray, C.H. Stoessel, L. Martinu, J. Vacc. Sci. Technol. 36, 020801 (2018)

  22. P. Bamola, S. Rawat, C. Dwivedi, M. Sharma, B. Singh, H. Sharma, J. Mater. Sci. Mater. Electron. 32, 1427–1444 (2021)

    Article  Google Scholar 

  23. G. Greczynski, L. Hultman, Prog. Mater. Sci. 107, 100591 (2020)

    Article  Google Scholar 

  24. W. Huang, X. Wang, Y. Xue, Y. Yang, X. Ao, RSC Adv. 5, 56098–56102 (2015)

    Article  ADS  Google Scholar 

  25. B.D. Choudhary, C. Lin, S.M.A. Shawon, J.S. Martinez, H. Huq, M.J. Uddin, Sci. Rep. 11, 7552 (2021)

    Article  ADS  Google Scholar 

  26. Y. Wang, L. Yin, J. Wu, N. Li, N. He, H. Zhao, X. Lai, Q. Wu, J. Mater. Sci. 57, 1362–1372 (2022)

    Article  ADS  Google Scholar 

  27. M. Padmini, T. Balaganapathi, P. Thilakan, Cera. Int. 144, 1–16 (2022)

    Google Scholar 

  28. Y. Xiang, X. Sheng, H. Zhou, D. Wang, X. Chen, X. Feng, J. Phys. Chem. C 126, 1966–1971 (2022)

    Article  Google Scholar 

  29. J. Li, B. Wang, Y. Pang, M. Sun, S. Liu, W. Fang, L. Chen, Coll. Surf. A 638, 128297 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

The Science and Engineering Research Board (SERB) of the Department of Science and Technology (DST) (ECR/2017/000516) of India funded this research. Authors (PB and HS) are extremely thankful to Ms Devarani, and Dr Razia Nongjai of IUAC for their support in carrying out ion irradiation work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Kumar or H. Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bamola, P., Rawat, S., Tanwar, M. et al. Effect of low energy ion irradiation on TiO\(_{2}\)-based hybrid nanostructures for enhanced photocatalytic activity. Eur. Phys. J. Spec. Top. 231, 2941–2949 (2022). https://doi.org/10.1140/epjs/s11734-022-00545-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00545-2

Navigation