Skip to main content
Log in

Approximate analytical solutions of the kinetic and balance equations for intense boiling

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The process of intense boiling is theoretically studied on the basis of kinetic and balance equations for the bubble-size distribution function and system temperature. The kinetic equation for the bubble-size distribution function represents the first-order partial differential equation with a source term. The heat balance is spatially homogeneous and takes into account the heat exchange of the system with the external environment. This non-linear system is supplemented by the initial and boundary conditions. Namely, the initial bubble-size distribution and temperature are regarded as known, and the flux of bubbles overcoming the critical size is defined by the rate of nuclei formation. A non-linear integro-differential system of model equations is solved analytically by the integral Laplace transform and saddle-point methods. It is shown that the solution has a different form at \(x\ge \tau \) and \(x<\tau \) (here, x and \(\tau \) are the dimensionless spatial and temporal variables). Also, we show that the initial bell-shaped distribution function decreases, and the liquid temperature increases with increasing time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. V.P. Skripov, Metastable Liquids (Wiley, New York, 1974)

    Google Scholar 

  2. Yu.A. Buyevich, I.A. Natalukha, Int. J. Heat Mass Transf. 39, 2363 (1996)

    Article  Google Scholar 

  3. Yu.A. Buyevich, V.V. Mansurov, I.A. Natalukha, Chem. Eng. Sci. 46, 2573 (1991)

    Article  Google Scholar 

  4. Yu.A. Buyevich, V.V. Mansurov, I.A. Natalukha, Chem. Eng. Sci. 46, 2579 (1991)

    Article  Google Scholar 

  5. Yu.A. Buyevich, I.A. Natalukha, Chem. Eng. Sci. 49, 3241 (1994)

    Article  Google Scholar 

  6. Yu.A. Buyevich, D.V. Alexandrov, IOP Conf. Ser. Mater. Sci. Eng. 192, 012001 (2017)

    Article  Google Scholar 

  7. E.V. Makoveeva, D.V. Alexandrov, Philos. Trans. R. Soc. A 376, 20170327 (2018)

    Article  ADS  Google Scholar 

  8. E.V. Makoveeva, D.V. Alexandrov, Philos. Trans. R. Soc. A 377, 20180210 (2019)

    Article  ADS  Google Scholar 

  9. E.V. Makoveeva, D.V. Alexandrov, Eur. Phys. J. Spec. Top. 228, 25 (2019)

    Article  Google Scholar 

  10. A.A. Ivanov, I.V. Alexandrova, D.V. Alexandrov, Philos. Trans. R. Soc. A 377, 20180215 (2019)

    Article  ADS  Google Scholar 

  11. A.A. Ivanov, I.V. Alexandrova, D.V. Alexandrov, Eur. Phys. J. Spec. Top. 229, 365 (2020)

    Article  Google Scholar 

  12. J.W. Mullin, Crystallization (Butterworth, London, 1972)

    Google Scholar 

  13. Yu.A. Buyevich, Yu.M. Goldobin, G.P. Yasnikov, Int. J. Heat Mass Transf. 37, 3003 (1994)

    Article  Google Scholar 

  14. U. Vollmer, J. Raisch, Control Eng. Pract. 9, 837 (2001)

    Article  Google Scholar 

  15. D.L. Aseev, D.V. Alexandrov, Dokl. Phys. 51, 291 (2006)

    Article  ADS  Google Scholar 

  16. D.L. Aseev, D.V. Alexandrov, Int. J. Heat Mass Trans. 49, 4903 (2006)

    Article  Google Scholar 

  17. D.V. Alexandrov, Chem. Eng. Sci. 117, 156 (2014)

    Article  Google Scholar 

  18. A. Rachah, D. Noll, F. Espitalier, F. Baillon, Math. Methods Appl. Sci. 39, 1101 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  19. D.V. Alexandrov, A.A. Ivanov, I.V. Alexandrova, Philos. Trans. R. Soc. A 376, 20170217 (2018)

    Article  ADS  Google Scholar 

  20. Yu.A. Buyevich, V.V. Mansurov, J. Cryst. Growth 104, 861 (1990)

    Article  ADS  Google Scholar 

  21. D.A. Barlow, J. Cryst. Growth 311, 2480 (2009)

    Article  ADS  Google Scholar 

  22. V.A. Shneidman, Phys. Rev. E 82, 031603 (2010)

    Article  ADS  Google Scholar 

  23. V.A. Shneidman, Phys. Rev. E 84, 031602 (2011)

    Article  ADS  Google Scholar 

  24. D.A. Barlow, J. Cryst. Growth 470, 8 (2017)

    Article  ADS  Google Scholar 

  25. D.V. Alexandrov, I.G. Nizovtseva, Philos. Trans. R. Soc. A 377, 20180214 (2019)

    Article  ADS  Google Scholar 

  26. D.V. Alexandrov, I.G. Nizovtseva, I.V. Alexandrova, Int. J. Heat Mass Transf. 128, 46 (2019)

    Article  Google Scholar 

  27. I.V. Alexandrova, D.V. Alexandrov, Philos. Trans. R. Soc. A 378, 20190245 (2020)

    Article  ADS  Google Scholar 

  28. D.V. Alexandrov, I.V. Alexandrova, Philos. Trans. R. Soc. A 378, 20190247 (2020)

    Article  ADS  Google Scholar 

  29. D.V. Alexandrov, E.V. Makoveeva, Phys. Lett. A 384, 126259 (2020)

    Article  MathSciNet  Google Scholar 

  30. E.V. Makoveeva, D.V. Alexandrov, Eur. Phys. J. Spec. Top. 229, 375 (2020)

    Article  Google Scholar 

  31. D.V. Alexandrov, I.G. Nizovtseva, Proc. R. Soc. A 470, 20130647 (2014)

    Article  ADS  Google Scholar 

  32. D.V. Alexandrov, Phys. Lett. A 378, 1501 (2014)

    Article  ADS  Google Scholar 

  33. G. Doetsch, Anleitung zum Praktischen Gebrauch der Laplace-Transformation und der Z-Transformation (R. Oldenbourg, München, 1967)

    MATH  Google Scholar 

  34. V.A. Ditkin, A.P. Prudnikov, Integral Transforms and Operational Calculus (Pergamon Press, Oxford, 1965)

    MATH  Google Scholar 

  35. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, San Diego, 2014)

    MATH  Google Scholar 

  36. E.M. Lifshitz, L.P. Pitaevskii, Physical Kinetics (Pergamon, Oxford, 1981)

    Google Scholar 

  37. D.V. Alexandrov, A.P. Malygin, Model. Simul. Mater. Sci. Eng. 22, 015003 (2014)

    Article  ADS  Google Scholar 

  38. D.V. Alexandrov, J. Phys. A Math. Theor. 47, 125102 (2014)

    Article  ADS  Google Scholar 

  39. J.S. Turner, Buoyancy Effects in Fluids (Cambridge University Press, Cambridge, 1979)

    MATH  Google Scholar 

  40. D.V. Alexandrov, Philos. Mag. Lett. 96, 132 (2016)

    Article  ADS  Google Scholar 

  41. V.T. Borisov, Theory of Two-Phase Zone of a Metal Ingot (Metallurgiya Publishing House, Moscow, 1987)

    Google Scholar 

  42. D.V. Alexandrov, A.P. Malygin, Dokl. Earth Sci. 411, 1407 (2006)

    Article  ADS  Google Scholar 

  43. D.V. Alexandrov, A.P. Malygin, I.V. Alexandrova, Ann. Glaciol. 44, 118 (2006)

    Article  ADS  Google Scholar 

  44. D.V. Alexandrov, P.K. Galenko, D.M. Herlach, J. Cryst. Growth 312, 2122 (2010)

    Article  ADS  Google Scholar 

  45. D.V. Alexandrov, A.A. Ivanov, Int. J. Heat Mass Transf. 52, 4807 (2009)

    Article  Google Scholar 

  46. I.V. Alexandrova, D.V. Alexandrov, D.L. Aseev, S.V. Bulitcheva, Acta Phys. Pol. A 115(4), 791 (2009)

    Article  ADS  Google Scholar 

  47. P.K. Galenko, D.V. Alexandrov, Philos. Trans. R. Soc. A 376, 20170210 (2018)

    Article  ADS  Google Scholar 

  48. D.V. Alexandrov, A.P. Malygin, Int. J. Heat Mass Trans. 55, 3196 (2012)

    Article  Google Scholar 

  49. I.G. Nizovtseva, D.V. Alexandrov, Philos. Trans. R. Soc. A 378, 20190248 (2020)

    Article  ADS  Google Scholar 

  50. D.V. Alexandrov, J. Phys. A Math. Theor. 51, 075102 (2018)

    Article  ADS  Google Scholar 

  51. D.V. Alexandrov, I.V. Alexandrova, Philos. Trans. R. Soc. A 377, 20180209 (2019)

    Article  ADS  Google Scholar 

  52. E.V. Makoveeva, D.V. Alexandrov, Eur. Phys. J. Spec. Top. 229, 2923 (2020)

    Article  Google Scholar 

  53. M.V. Fedoruk, Saddle-point method (Nauka, Moscow, 1977)

    Google Scholar 

  54. D.V. Alexandrov, Eur. Phys. J. Spec. Top. 229, 383 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The theoretical part of this work is supported by the Russian Foundation for Basic Research (Project No. 20-08-00199). Numerical calculations were performed due to the support from the Ministry of Science and Higher Education of the Russian Federation [project no. FEUZ-2020-0057].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri V. Alexandrov.

Appendix A: Approximate calculation of the integral contribution \(A(\tau )\)

Appendix A: Approximate calculation of the integral contribution \(A(\tau )\)

Let us evaluate here the integral term \(A(\tau )\) entering in expression (23) using the saddle-point technique [53, 54] for a Laplace-type integral. At first, introducing

$$\begin{aligned} \varphi (\tau )=\frac{\sqrt{\pi }}{2}\left( 1-\mathrm{erfc}\sqrt{a\tau } \right) -\sqrt{a\tau } \exp \left( -a\tau \right) , \end{aligned}$$
(A.1)

we rewrite \(A(\tau )\) from (24) in the form of

$$\begin{aligned} A(\tau ) = \frac{R\left[ u(0)\right] \varphi (\tau ) }{a^{3/2}} -\frac{1}{a^{3/2}}\int \limits _0^\tau \varphi (\tau _1)\frac{\partial R\left[ u (\tau -\tau _1) \right] }{\partial \tau _1}\mathrm{d}\tau _1. \end{aligned}$$
(A.2)

Now, introducing the new variable \(\xi =\tau -\tau _1\) and evaluating the derivative \(\partial R/\partial \tau _1\), we rewrite the integral (A.2) as

$$\begin{aligned} A(\tau ) = \frac{R\left[ u(0)\right] \varphi (\tau ) }{a^{3/2}} +\frac{1}{a^{3/2}}\int \limits _0^\tau {{\tilde{f}}}(\xi ,\tau ) \exp \left[ \kappa S[u(\xi )] \right] \mathrm{d}\xi , \end{aligned}$$
(A.3)

where

$$\begin{aligned} {{\tilde{f}}}(\xi ,\tau )&= \kappa \varphi (\tau -\xi ) \frac{3u(\xi )+2}{u^3(\xi )\left[ u(\xi )+1 \right] ^2}\frac{\mathrm{d}u}{\mathrm{d}\xi },\\\&S[u(\xi )]=-\frac{1}{u^2(\xi )\left[ u(\xi )+1 \right] }. \end{aligned}$$
(A.4)

We assume that the function \(S(\xi )\) has a maximum that is sharper, the larger the parameter \(\kappa \) [53, 54]. The maximum of this function attains at the maximum point of dimensionless temperature \(u_{\mathrm{max}}=u(\tau )\). Taking this into account, we evaluate the integral (A.3) using the saddle-point method [53, 54] as

$$\begin{aligned} A(\tau ) = \frac{R\left[ u(0)\right] \varphi (\tau ) }{a^{3/2}} +\frac{1}{a^{3/2}\kappa }\exp \left[ \kappa S[u(\tau )] \right] \sum \limits _{k=0}^\infty \frac{a_k}{\kappa ^k}, \end{aligned}$$
(A.5)

where

$$\begin{aligned} a_k= & {} \frac{(-1)^{k+1}}{k!}\varGamma (k+1)\left[ h(\xi )\frac{\mathrm{d}}{\mathrm{d}\xi } \right] ^k\left[ {{\tilde{f}}}(\xi ,\tau ) h(\xi ) \right] _{\xi =\tau },\\ h(\xi )= & {} \frac{1}{S^\prime [u(\xi )]}. \end{aligned}$$

Here, \(S[u(\xi )]\) is given by expression (A.4), and \(\varGamma (k+1)\) is the Euler Gamma function.

Taking into account that all coefficients \(a_k\) are proportional to \(\varphi (\tau )\) from (A.1), and \(\varphi (0)=0\), we conclude that the second term in (A.5) vanishes. Therefore, \(A(\tau )\) can be estimated as

$$\begin{aligned} A(\tau ) = \frac{R\left[ u(0)\right] \varphi (\tau ) }{a^{3/2}} . \end{aligned}$$
(A.6)

An important point is that the function \(A(\tau )\) from (A.6) is independent on \(u(\tau )\). This enables us to use the temperature dependence (26) in the case \(x<\tau \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandrova, I.V., Ivanov, A.A. & Alexandrov, D.V. Approximate analytical solutions of the kinetic and balance equations for intense boiling. Eur. Phys. J. Spec. Top. 231, 1153–1158 (2022). https://doi.org/10.1140/epjs/s11734-022-00514-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00514-9

Navigation