Skip to main content
Log in

Geometry design and performance evaluation of thermoelectric generator

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

A thermoelectric generator is a solid-state device that directly converts heat into electricity without any moving parts. The problem with these devices is that they are less efficient. The present study considers modeling and numerical simulation of a thermoelectric generator of different shapes to evaluate their efficacy. Effective material properties of TEG are used in CPM model of analysis. Different shapes of the leg have been simulated, keeping the same isothermal boundary conditions. The effect of the cross-section area of the leg and leg length. Hot-side and cold-side junction temperature and thermal stress developed are reported. Results shows that trapezoid generators are better from efficiency point of view where as square and circular cross-section leg produces more power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

zt:

Material figure of merit

ZT:

Device figure of merit

\(\alpha \) :

Seebeck coefficient

\(\kappa \) :

Thermal conductivity

\(\rho \) :

Resistivity of material

L :

Length of leg

A :

Cross-section area

\( \dot{Q_{\text {out}}}\) :

Heat flow rate out from cold junction

\(\dot{Q_{\text {in}}}\) :

Heat flow rate into hot junction

R :

Total resistance

\(R_{\text {in}}\) :

Internal resistance

\(R_L\) :

Load resistance

\(T_h\) :

Hot junction temperature

\(T_c\) :

Cold junction temperature

\(P_{\text {out}}\) :

Power output from thermoelectric generator

\(\eta _{\text {th}}\) :

Thermal efficiency

References

  1. P. Malaji, S. Ali, S. Adhikari, M. Friswell, Analysis of harvesting energy from mistuned multiple harvesters with and without coupling. Procedia Eng. 144, 1065–1073 (2016)

    Article  Google Scholar 

  2. P. V. Malaji, Analysis of pendulum-based nonlinear energy sink for energy harvesting. In: Trends in Manufacturing and Engineering Management. Lecture Notes in Mechanical Engineering, pp. 467–478, Springer, (2021)

  3. M. Alhawari, B. Mohammad, H. Saleh, M. Ismail, A survey of thermal energy harvesting techniques and interface circuitry. In: 2013 IEEE 20th International Conference on Electronics, Circuits, and Systems (ICECS), pp. 381–384, IEEE, (2013)

  4. X. Lu, S.-H. Yang, Thermal energy harvesting for WSNS. In: 2010 IEEE International Conference on Systems, Man and Cybernetics, pp. 3045–3052, IEEE, (2010)

  5. D. Champier, Thermoelectric generators: a review of applications. Energy Convers. Manage. 140, 167–181 (2017)

    Article  Google Scholar 

  6. D. Ebling, A. Krumm, B. Pfeiffelmann, J. Gottschald, J. Bruchmann, A.C. Benim, M. Adam, R. Herbertz, A. Stunz et al., Development of a system for thermoelectric heat recovery from stationary industrial processes. J. Electron. Mater. 45(7), 3433–3439 (2016)

    Article  ADS  Google Scholar 

  7. J. Caban, Technologies of using energy harvesting systems in motor vehicles–energy from exhaust system

  8. Q. Zhang, J. Liao, Y. Tang, M. Gu, C. Ming, P. Qiu, S. Bai, X. Shi, C. Uher, L. Chen, Realizing a thermoelectric conversion efficiency of % in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration. Energy Environ. Sci. 10(4), 956–963 (2017)

    Article  Google Scholar 

  9. C. Wang, S. Tang, X. Liu, G. Su, W. Tian, S. Qiu, Experimental study on heat pipe thermoelectric generator for industrial high temperature waste heat recovery. Appl. Therm. Eng. 175, 115299 (2020)

    Article  Google Scholar 

  10. D. Rowe, General principles and basic considerations. In:Thermoelectrics Handbook, pp. 26–40, CRC press, (2018)

  11. G. J. Snyder, E. S. Toberer, Complex thermoelectric materials. In: Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, pp. 101–110, (2011)

  12. R. Kondaguli, P. Malaji, Mathematical modeling and numerical simulation of thermoelectric generator. AIP Conf. Proc. 2274, 030037 (2020). (AIP Publishing LLC)

  13. L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SNSE crystals. Nature 508(7496), 373–377 (2014)

    Article  ADS  Google Scholar 

  14. P.-P. Shang, J. Dong, J. Pei, F.-H. Sun, Y. Pan, H. Tang, B.-P. Zhang, L.-D. Zhao, J.-F. Li, Highly textured N-type SNSE polycrystals with enhanced thermoelectric performance. Research, 2019, (2019)

  15. C.B. Vining, An inconvenient truth about thermoelectrics. Nat. Mater. 8(2), 83–85 (2009)

    Article  ADS  Google Scholar 

  16. P. Ziolkowski, P. Blaschkewitz, E. Müller, Heat flow measurement as a key to standardization of thermoelectric generator module metrology: a comparison of reference and absolute techniques. Measurement 167, 108273 (2021)

  17. H. Lee, J. Sharp, D. Stokes, M. Pearson, S. Priya, Modeling and analysis of the effect of thermal losses on thermoelectric generator performance using effective properties. Appl. Energy 211, 987–996 (2018)

    Article  Google Scholar 

  18. A. Elarusi, N. Illendula, H. Fagehi, Performance prediction of commercial thermoelectric generator modules using the effective material properties. Western Michigan University, (2014)

  19. Z. Luo, A simple method to estimate the physical characteristics of a thermoelectric cooler from vendor datasheets. Electron. Cool. 14(3), 22–27 (2008)

  20. S. Lineykin, S. Ben-Yaakov, Modeling and analysis of thermoelectric modules. IEEE Trans. Ind. Appl. 43(2), 505–5 (2007)

    Article  Google Scholar 

  21. D.R. Karana, R.R. Sahoo, Influence of geometric parameter on the performance of a new asymmetrical and segmented thermoelectric generator. Energy 179, 90–99 (2019)

    Article  Google Scholar 

  22. G. Min, D. Rowe, Optimisation of thermoelectric module geometry for ‘waste heat’electric power generation. J. Power Sources 38(3), 253–259 (1992)

    Article  ADS  Google Scholar 

  23. S. Kumar, S.D. Heister, X. Xu, J.R. Salvador, Optimization of thermoelectric components for automobile waste heat recovery systems. J. Electron. Mater. 44(10), 3627–3636 (2015)

    Article  ADS  Google Scholar 

  24. H. Ali, A.Z. Sahin, B.S. Yilbas, Thermodynamic analysis of a thermoelectric power generator in relation to geometric configuration device pins. Energy Convers. Manage. 78, 634–640 (2014)

    Article  Google Scholar 

  25. L. Fan, G. Zhang, R. Wang, K. Jiao, A comprehensive and time-efficient model for determination of thermoelectric generator length and cross-section area. Energy Convers. Manage. 122, 85–94 (2016)

    Article  Google Scholar 

  26. H. He, Y. Wu, W. Liu, M. Rong, Z. Fang, X. Tang, Comprehensive modeling for geometric optimization of a thermoelectric generator module. Energy Convers. Manage. 183, 645–659 (2019)

    Article  Google Scholar 

  27. A. Fabián-Mijangos, G. Min, J. Alvarez-Quintana, Enhanced performance thermoelectric module having asymmetrical legs. Energy Convers. Manage. 148, 1372–1381 (2017)

    Article  Google Scholar 

  28. S. Weera, H. Lee, A. Attar, Utilizing effective material properties to validate the performance of thermoelectric cooler and generator modules. Energy Convers. Manage. 205, 1427 (2020)

    Article  Google Scholar 

  29. H.-Z. maunfacturer, Hiz data sheet. Hi Z 1(1), 1 (2019)

  30. R. Kondaguli, P. Malaji, Analysis of bismuth telluride (bi2te3) thermoelectric generator. In 2020 IEEE Bangalore Humanitarian Technology Conference (B-HTC), pp. 1–5, IEEE, (2020)

  31. E. E. Antonova, D. C. Looman, Finite elements for thermoelectric device analysis in ansys. In: ICT 2005. 24th International Conference on Thermoelectrics, 2005., pp. 215–218, IEEE, (2005)

  32. A.F. Ioffe, L. Stil’Bans, E. Iordanishvili, T. Stavitskaya, A. Gelbtuch, G. Vineyard, Semiconductor thermoelements and thermoelectric cooling. Phys. Today 12(5), 42 (1959)

    Article  ADS  Google Scholar 

  33. P. Ponnusamy, J. de Boor, E. Müller, Using the constant properties model for accurate performance estimation of thermoelectric generator elements. Appl. Energy 262, 114587 (2020)

    Article  Google Scholar 

  34. R. Courant, Variational methods for the solution of problems of equilibrium and vibrations. Bull. Am. Math. Soc. 49(1), 1–23 (1943)

    Article  MathSciNet  Google Scholar 

  35. P. G. Lau, R. J. Buist, Temperature and time dependent finite-element model of a thermoelectric couple. In:Fifteenth International Conference on Thermoelectrics. Proceedings ICT’96, pp. 227–233, IEEE, (1996)

Download references

Acknowledgements

The author acknowledges Prof. Ramesh Chandra Mallik, Indian Institute of Science Bangalore for fruitful discussion and support. Authors acknowledges Vision Group on Science and Technology (VGST) (Grant No. KSTePS/VGST-K-FIST L2/2078-L9 / GRD No.765).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Malaji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondaguli, R.S., Malaji, P.V. Geometry design and performance evaluation of thermoelectric generator. Eur. Phys. J. Spec. Top. 231, 1587–1597 (2022). https://doi.org/10.1140/epjs/s11734-022-00492-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00492-y

Navigation