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Abstract In December 2019, a novel coronavirus disease (COVID-19) appeared in Wuhan, China. After
that, it spread rapidly all over the world. Novel coronavirus belongs to the family of Coronaviridae and
this new strain is called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epithelial cells of
our throat and lungs are the main target area of the SARS-CoV-2 virus which leads to COVID-19 disease.
In this article, we propose a mathematical model for examining the effects of antiviral treatment over viral
mutation to control disease transmission. We have considered here three populations namely uninfected
epithelial cells, infected epithelial cells, and SARS-CoV-2 virus. To explore the model in light of the optimal
control-theoretic strategy, we use Pontryagin’s maximum principle. We also illustrate the existence of the
optimal control and the effectiveness of the optimal control is studied here. Cost-effectiveness and efficiency
analysis confirms that time-dependent antiviral controlled drug therapy can reduce the viral load and
infection process at a low cost. Numerical simulations have been done to illustrate our analytical findings.
In addition, a new variable-order fractional model is proposed to investigate the effect of antiviral treatment
over viral mutation to control disease transmission. Considering the superiority of fractional order calculus
in the modeling of systems and processes, the proposed variable-order fractional model can provide more
accurate insight for the modeling of the disease. Then through the genetic algorithm, optimal treatment
is presented, and its numerical simulations are illustrated.

Abbreviations

SARS-CoV-2: Severe Acute Respiratory Syndrome Coro-
navirus 2

WHO: World Health Organisation
ACE2: Angiotensin-converting enzyme 2
AIR: Adaptive immune responses
ICER: Incremental cost-effectiveness ratio
PRCC: Partial rank correlation coefficient

1 Introduction

COVID-19 is the disease that affects the whole world
and this disease is caused by severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) [1]. Coro-
navirus can be spread and infects humans through
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droplets via coughing and sneezing from infected
humans. A total of 13 million people worldwide living
with COVID-19 today and more than half a million peo-
ple died to date. Scientists and researchers of the whole
world are searching for the anti-COVID-19 vaccine. But
to date, no such fruitful results have shown yet. In
view of that, the use of available antiviral drugs and
immunosuppressive drugs combination is the only way
to fight against COVID-19 infection [2]. Therefore non-
pharmaceutical interventions like self-isolation, using
masks, hand washing, sanitation are suggested by the
World Health Organisation (WHO) and Indian Coun-
cil for Medical Research (ICMR). Also, the Government
of states has implemented lockdown, travel restrictions,
quarantine measures and testing to control the dis-
ease. Several epidemiological mathematical models [3–
19] have been developed to make the right decisions in
these measures. These have highlighted that social dis-
tancing intervention to mitigate the epidemic is a key
aspect.

To study the COVID-19 dynamics within human
host, a few mathematical models have been developed
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[2,20–24]. The major target area of the SARS-CoV-2
virus are the epithelial cells in the upper respiratory
tract and upper divisions of bronchi [2,25]. If the infec-
tion spreads to the lower lungs, the patients’ condi-
tions become severe [2,26,27]. The cell infection process
by the SARS CoV-2 virus has mainly two stages. At
first, the SARS-CoV-2 virus binds to the angiotensin–
converting enzyme 2 (ACE2) receptors on the surface
cells [28] and viral genome penetrates the cell and cells
become infected. The infected cells turned into virus-
producing cells and the new virions are reproduced
through the eclipse and burst phase [2]. Zhou et al.
[1] identified the principal infection site of the human
host in COVID-19 and also reported that SARS-CoV-
2 spikes S binds with ACE2 receptor of epithelial cells
with high affinity. Their study shows that the appro-
priate dosing interval and drug dosage are important
to eradicate the viral load. Chatterjee and Bashir [23]
formulated a mathematical model to examine the conse-
quence of adaptive immune response to the viral muta-
tion to control disease transmission. They also study
the effect of the combination of antiviral drug ther-
apy and its effect on the model dynamics. Chatterjee et
al. [24] proposed a group of fractional equations model
considering uninfected epithelial cells, infected epithe-
lial cells, SARS-CoV-2 virus, and CTL response induc-
ing cells accounting both the lytic and non-lytic effects
of immune response and the effects of commonly used
antiviral drugs.

In this research article, we propose mathematical
modeling to investigate the SARS-CoV-2 replication
within host, specifically the interaction between suscep-
tible and SARS-CoV-2 virus. We also study the cur-
rent pharmaceutical interventions in our model. Here
we study the effect of commonly used antiviral and
immune-suppressing drugs. It has been observed that
antiviral drugs and immunosuppressive drugs play a
pivotal role in the treatment of high – risk patients
[2,21]. Immunosuppressive drugs decrease the adaptive
immune responses (AIR) to its low level not to inhibit
the innate immune response during the primary phase
of infection [2,21]. Due to the effect of the immunosup-
pressive drugs, the infected cells become inadequate to
produce new virions. The drug should be removed so
that the AIRs can kill the residual virus. Insight looks
at the drug regimen leads to fast and thorough recov-
ery. Here we have formulated the basic mathematical
model of COVID-19 based on drug effectiveness.

The article is designed as follows: first we have pro-
vided the formulation of our mathematical model cen-
tered with drug effectiveness in the Sect. 2 and stud-
ied the model analytically. In Sect. 3, We have framed
the optimal control problem in the light of cost func-
tion for optimal drug dosage. In Sect. 4, the numeri-
cal studies of both the models (time independent and
time dependent control) are depicted. Also the drug effi-
ciency along with cost effectiveness have been verified.
In Sect. 5, we proposed a variable order fractional model
describing the SARS-CoV-2 infection and the effect of
optimal strategies in this system. In Sect. 6, we have
drawn discussions regarding our analytical and numer-

Fig. 1 The schematic figure symbolises the model of virus
host infection process under combination of drug regimen

ical findings and finally in Sect. 7, we conclude about
our gained results.

2 Analysis of basic model with fixed control

For COVID-19 infection, SARS-CoV-2 virus infects
epithelial cells that carry the ACE2 receptor protein.
After the cells become infected, such cells can produce
new SARS-CoV-2 virus particles. To model the infec-
tion process we consider uninfected cells (ES), infected
virus-producing cells (EI), and free virus (V ). The host
viral infection process is yet to be explored completely.
We have considered a reasonable dynamics of unin-
fected cells as

dES

dt
= rES

[
1 − ES

K

]
, (2.1)

where we consider that epithelial cells can be produced
by proliferation from existing cells. Here we present the
proliferation by a logistic function in which r is the
maximum proliferation rate and K is the density of the
epithelial cells at which proliferation shuts off.

In presence of virus, uninfected epithelial cells become
infected. The simplest and common way to model infec-
tion is to augment with mass action term, βESV . Infec-
tion also occurs by cell transmission when infected cells
directly interact with uninfected cells. Since there is lit-
tle evidence of cell infection pathway in vivo, thus we
ignore this mode of infection rate here. The death rate
of infected cells is δEEI and η is the number of virus
produced from infected cells. We also consider δV V as
the viral removal rate. In terms of biological view, we
have considered an ordinary differential equation model
that describes the interaction between epithelial cells
and SARS-CoV-2. We have explored the optimal con-
trol strategy of this ODE model. Our proposed model
is as follows:

dES

dt
= rES

[
1 − ES

K

]
− [1 − ε1]βESV,

dEI

dt
= [1 − ε1]βESV − δEEI,

dV

dt
= [1 − ε2]ηδEEI − δV V, (2.2)
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with this non-negative initial condition:

ES(t0) = E0
S , EI(t0) = E0

I , V (t0) = V 0. (2.3)

The model considers that t0 ∈ [0, ∞) is the start-
ing day of COVID-19 infection. Here ε1 and ε2 are the
effectiveness of the antiviral drug with 0 < ε1 < 1, 0 <
ε2 < 1. ε1,2 = 0 represents no antiviral drug effect while
ε1,2 = 1 represents that the drug is 100% effective.

2.1 Positivity and boundedness

Theorem 1 All the solutions of the system (2.2) sub-
ject to initial condition (2.3) are positive and bounded
in R

3
+, for all t > 0.

Proof The first equation of the system (2.2) can be
written as;

dES

dt
= rES

[
1 − ES

K

]
− [1 − ε1]βESV,

= aES − bE2
S, (2.4)

where a = [r − (1 − ε1)βV ] and b = r/K. Then on
integration we get,

ES =
e
∫ t
0 ads

∫ t

0
be

∫ t
0 adsdp + C

.

In the similar way, it can be observed that

EI = E0
I exp

(
−

∫ t

0

δIds
)

> 0

and V = V 0 exp
(

−
∫ t

0

δV ds
)

> 0.

Consequently, all the solution trajectories (ES, EI, V )
of system (2.2) with initial conditions (2.3) are positive.
Next we show the boundedness of the solutions. Accord-
ing to [29], we can construct from the first and second
equations of system (2.2)

lim sup
t→∞

(ES + EI) ≤ rK

4δE
= μ.

Accordingly, ES ≤ μ and EI ≤ μ. Similarly, from the
third equation of the system (2.2) we can write

lim sup
t→∞

(V ) ≤ (1 − ε2)ηδEμ

δV
= ω.

Therefore, we get the positively invariant bounded
region

Φ =
{

(ES, EI, V ) ∈ R
3
+ : ES, EI ≤ μ, V ≤ ω

}
.

(2.5)

The region Φ is well posed and attracting since all
the solutions of the system (2.2) with initial conditions
(2.3) will enter this region and will never leave it. ��

2.2 Equilibria

Here we determine the biologically feasible equilibrium
points.

1. The model (2.2) have two disease-free equilib-
rium points, one is P 0(0, 0, 0) and second one is
P0(K, 0, 0). Here we consider only disease-free equi-
librium P0(K, 0, 0) because this is very relevant for
our system (2.2) with initial condition (2.3) to be bio-
logically feasible. Disease-free equilibrium P0(K, 0, 0)
always exists.

2. P ∗(E∗
S, E∗

I , V ) is the endemic equilibrium where
COVID-19 infection persists in the system.

2.3 Basic reproduction number

In this subsection, we now determine the basic repro-
duction number (R0) of the system (2.2) using the next
generation matrix method proposed in [30,31]. It is
notable that the infected compartments of the system
(2.2) are EI and V . Let M depicts the emergence of
new infections while N stands for transfer of the infec-
tions between the compartments and x = [EI, V ]T .
Then at the disease-free steady state P0(K, 0, 0) the
linearized infectious subsystem of the system (2.2) is
given by ẋ = M − N where

M =
[

βs(1 − ε1)ESV
0

]
,

and N =
[

δEEI

−(1 − ε2)ηδEEI + δV V

]
.

Accordingly we can calculate that

M =

[
0 βs(1 − ε1)ES

0 0

]
, and

N =

[
δE 0

−(1 − ε2)ηδE δV

]
.

Therefore next generation matrix is MN−1 and

MN−1 =
1

δEδV

[
(1 − ε1)(1 − ε2)βηδEK (1 − ε)βδEK

0 0

]
.

And we have

R0 = sp(MN−1) =
(1 − ε1)(1 − ε2)βηK

δV
. (2.6)

2.4 Existence of the endemic steady state

To acquire feasible solutions of the system (2.2), the
equilibria of the system must be positive. The pos-
itive components of the unique endemic equilibrium
P ∗(E∗

S, E∗
I , V ∗) are computed as
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Table 1 Variables and parameter values used for numerical simulations of the system (2.2)

Variables and parameters

Dependent Biological meaning
Variables
ES Susceptible cells
EI Infected cells
V Free virus
Parameters Biological meaning Assigned value (unit)
r Growth rate of cells 13.3 × 10−1(cell h−1)
K Carrying capacity of cell 1.8 × 105 (cells ml−1)

β Rate of infection/transmission 2.1 × 10−8(CFU/ml)−1h−1

ε1 Efficacy of immunosuppressive drug [0, 1]
ε2 Efficacy of antiviral drug [0, 1]
δE Death rate of epithelial cell 16.7 × 10−2(h−1)
η Number of free virus produced

from infected cells 11.3 × 10−1

δV Virus removal rate 0.4 (h−1)

Fig. 2 The system
trajectories without control
(ε1 = 0, ε2 = 0) and with
control (see inset figure
where ε1 = 0.75 �= 0, ε2 =
0.75 �= 0)

Fig. 3 The forward
bifurcation curves for (2.2)
in the (R0, EI) planes. The
parameter β varied in the
range
[2.1 × 10−8, 2.1 × 10−6] to
allow R0 to vary in the
range [0, 5]

123



Eur. Phys. J. Spec. Top. (2022) 231:1915–1929 1919

E∗
S =

δV

(1 − ε1)(1 − ε2)βη
,

E∗
I =

rδV

(1 − ε1)(1 − ε2)βηδE

(
1 − 1

R0

)
,

V ∗ =
rδV

(1 − ε1)β

(
1 − 1

R0

)
.

Therefore it is observed that the unique endemic
equilibrium P ∗(E∗

S, E∗
I , V ∗) would exist only if R0 > 1.

2.5 Local stability analysis

Theorem 2 The system attains its locally asymptot-
ically steady state at disease-free equilibrium point of
the system (2.2) if R0 < 1 and would be unstable when
R0 > 1.

Proof The Jacobian matrix calculated at the disease-
free equilibrium point P0(K, 0, 0) is

JP0 =

[−r 0 −(1 − ε1)βK
0 − δE (1 − ε1)βK
0 −(1 − ε2)ηδE − δV

]
.

The characteristic equation corresponding of the
Jacobian matrix JP0 corresponding to the eigenvalue
ρ is given by

(−r − ρ)[ρ2 + (δE + δV )ρ +
{δEδV − (1 − ε1)(1 − ε2)βδEηK}] = 0.

Therefore we get ρ = −r and the real parts of the
other two eigenvalues must be negative for the locally
asymptotically stable of the equilibrium P0 and this will
be possible only when (δEδV −(1−ε1)(1−ε2)βδEηK) >
0 i.e. R0 < 1. If one of the eigenvalues or its real part
would be positive, then R0 > 1 and consequently P0

would be unstable. ��

Theorem 3 The endemic equilibrium point P ∗(E∗
S, E∗

I ,
V ∗) is locally asymptotically stable if R0 > 1.

Proof The Jacobian matrix around the equilibrium
point P ∗(E∗

S, E∗
I , V ∗) is

JP ∗ =

⎡
⎣ − rE∗

S
K 0 −(1 − ε1)βE∗

S
(1 − ε1)βV ∗ − δE (1 − ε1)βE∗

S
0 (1 − ε2)ηδE − δV

⎤
⎦ .

The characteristic equation of the Jacobian matrix
JP ∗ corresponding to the eigen value γ is given by

γ3 + 	1γ
2 + 	2γ + 	3 = 0, (2.7)

where,

	1 =
r

R0
+ δE + δV , 	2 =

r

R0

(
δE + δV

)
,

	3 = rδEδV

(
1 − 1

R0

)
.

It is notable that 	3 > 0, 	2 > 0, 	1 > 0 and 	1	2 >
	3 only for R0 > 1, that is the Routh–Hurwitz criterion
is satisfied for the cubic equation (2.7) and this ensures
that all the three roots of the characteristic equation
(2.7) have negative real parts when R0 > 1. Therefore
the endemic equilibrium point P ∗(E∗

S, E∗
I , V ∗) is locally

asymptotically stable provided R0 > 1. ��

2.6 Global stability analysis of disease-free
equilibrium

Theorem 4 The disease-free equilibrium point P0(K,
0, 0) is a globally asymptotically steady state point
whenever R0 < 1 and would be unstable if R0 > 1.

Proof Let us define a Lyapunov function L : Φ → R for
the system (2.2) as

L =
(1 − ε2)η

δV
EI +

1
δV

V. (2.8)

The Lyapunov function L is positive in the non-negative
cone Φ and attains zero at P0(K, 0, 0). Taking orbital
derivative of L along positive solutions of the system
(2.2), we get

dL

dt
=

(1 − ε2)η
δV

dEI

dt
+

1
δV

dV

dt

=
( (1 − ε1)(1 − ε1)βηES

δEδV
− 1

)
V. (2.9)

It is notable that in Φ, ES ≤ K and consequently we
get,

dL

dt
= (R0 − 1)V. (2.10)

The expression (2.10) reveals that the dL/dt would
be zero or negative only if R0 ≤ 1. Let us define the
subset S of Φ where dL/dt = 0 as t → ∞ and is given
by the equations

V = 0 for R0 < 1,

V = 0, or ES = K for R0 = 1.

It is observed that the maximum invariant set Q con-
tained in the set S is the plane EI = 0 and V = 0.
Therefore S = P0(K, 0, 0) and solutions started in
Q approaches to P0(K, 0, 0) as t → ∞. According
to Lyapunov–LaSalle theorem and LaSalle’s Invariant
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Principle [32,33], the disease-free steady state is glob-
ally asymptotically stable and all solution trajectories
started in Φ approaches to P0(K, 0, 0) as t → ∞. Hence
the proof is completed. From the biological point of
view, we can conclude that the infection can be removed
if the basic reproduction is below its threshold value 1.

��

2.7 Sensitivity

In this subsection, sensitivity analysis has been exe-
cuted to elucidate the relative weightage and the
robustness of predictions to the baseline parameters
associated to the basic reproduction number (R0)
[34]. Sensitivity analysis advantages to emphasize those
parameters which are highly sensitive comparative to
others in COVID-19 infection and we should pay atten-
tion to them to yield proper intervention schemes. The
forward sensitivity indices of R0 are given by

Πβ
R0

=
∂R0

∂β
× β

R0
=

(1 − ε1)(1 − ε2)ηK

δV
× β

R0
,

Πη
R0

=
∂R0

∂η
× η

R0
=

(1 − ε1)(1 − ε2)βK

δV
× η

R0
,

ΠK
R0

=
∂R0

∂K
× K

R0
=

(1 − ε1)(1 − ε2)ηβ

δV
× K

R0
,

Πε1
R0

=
∂R0

∂ε1
× ε1

R0
= − (1 − ε2)ηβK

δV
× ε1

R0
,

Πε2
R0

=
∂R0

∂ε2
× ε2

R0
= − (1 − ε2)ηβK

δV
× ε2

R0
,

ΠδV
R0

=
∂R0

∂δV
× δV

R0
= − (1 − ε1)(1 − ε2)ηβK

δ2V
× δV

R0
.

The normalized sensitivity indices can be indepen-
dent or dependent on the baseline parameters.

In the sensitivity analysis of R0, the most sensitive
parameters are carrying capacity of cells (K), rate of
infection (β) and number of free virus produced (η).
Since sensitivity indices of these parameters are all
equal to 1, hence we can conclude that due to 10%
increases (or decreases) of the value of carrying capac-
ity of cells, infection rate or number of free virus, the
basic reproduction number increases (or decreases) by
10%. Other important parameter is virus removal rate
(δV ). The decrease (or increase) of virus removal rate
by 10% increases (or decreases) the basic reproduction
number by 6.67%. Increase (or decrease) of the effec-
tiveness of immunosuppressive drugs by 10% decreases
(or increases) the basic reproduction number by 9.23%.
Similarly increasing (or decreasing) of antiviral drug
effectiveness by 10% decreases (or increases) the basic
reproduction number by 7.24%. Hence immunosuppres-
sive drugs play a pivotal role to control the disease pro-
gression in comparison with antiviral drug.

In the next section we construct a model considering
optimal control strategies based on host SARS-CoV-
2/COVID-19 model.

3 Model with time dependent control

Optimal control technique is the potent mathematical
tool which is mainly used in infectious disease modelling
[35–37]. By help of this mathematical tool we can find
out optimal drug dosage for which the disease can be
controlled. Our main aim is to minimize the number
infected cells and to maximize the number of uninfected
cells [38]. Here we present two control variables.

(i) u1(t) denotes the antiviral drug strategy (Strategy
I) which block infection.

(ii) u2(t) represents the drug strategies (Strategy II)
which block the production of virus particles.

Our main aim is to maximize the level of uninfected
cells. Also we need to retain cost of drug therapy at its
minimum level. Here control function u1(t) and u2(t)
are normalized between 0 and 1. Here the control class
is defined as:

M = {(u1(t), u2(t)) : 0 ≤ u1(t), u2(t)
≤ 1, is Lebesgue measurable}. (3.1)

Our main object is to minimize the objective func-
tional:

J (u1(t), u2(t)) =
∫ T

0

[
A1EI − A2ES

+B1u
2
1(t) + B2u

2
2(t)

]
dt, (3.2)

subject to the state system

dES

dt
= rES

[
1 − ES

K

]
− [1 − u1(t)]βESV,

dEI

dt
= [1 − u1(t)]βESV − δEEI,

dV

dt
= [1 − u2(t)]ηδEEI − δV V, (3.3)

with this positive initial condition:

ES(0) = E0
S , EI(0) = E0

I , V (0) = V 0. (3.4)

All the coefficients A1, A2, B1, and B2 are non-
negative and they represent weights on the benefit of
the cost related to the objective functional.

3.1 Existence of an optimal control

In this subsection, the existence of optimal control for
the system (3.3) is analyzed. We use Pontryagin Maxi-
mum Principle [38] to characterize an optimal control,
first we have to prove the existence of an optimal con-
trol [35,39].

Theorem 5 There exists an optimal control vector
(u∗

1(t), u∗
2(t)) ∈ M with corresponding state solutions

(E∗
S, E∗

I , V ∗) that minimizes the objective functional
J (u1(t), u2(t)) defined by (3.1) [35].
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Table 2 Sensitivity indices of basic reproduction number (R0)

Parameter Description Sensitivity index

K Carrying capacity of cell 1.0000
β Rate of infection/transmission 1.0000
η Number of free virus produced 1.0000
δV Virus removal rate − 0.6667
ε1 Efficacy of immunosuppressive drug − 0.9231
ε2 Efficacy of antiviral drug − 0.7241

Fig. 4 Normalized
forward sensitivity indices
of R0 with respect to
model parameters

Proof All the solutions of the system (3.3) are non-
negative and uniformly bounded for given initial condi-
tions (3.4). Non-negativity of objective functional val-
ues is obvious and non-negativity implies the bound-
edness of the objective functional. Hence a minimizing
sequence of controls (uv

1(t), u
v
2(t)) ∈ M exists such that;

lim
v→∞ J

(
uv
1(t), u

v
2(t)

)
= inf

u1(t),u2(t)∈M
J

(
u1(t), u2(t)

)
.

(3.5)

Therefore the controls belonging to M are uniformly
bounded in L∞ and consequently they are uniform
bounded in L2([0, T ]). Since the space L2([0, T ]) is
reflexive [40], there exists (u∗

1(t), u
∗
2(t)) ∈ M such that

on a sub sequence,

uv
1(t) ⇀ u∗

1(t), uv
2(t) ⇀ u∗

2(t), weakly in L2([0, T ])
as v → ∞.

Thus obviously the state sequence (Ev
S , Ev

I , V v) is
uniformly bounded corresponding to (uv

1(t), u
v
2(t)). It

can be seen that the uniform boundedness of the
right-hand sides of the system (3.3) implies the uni-
form boundedness of the derivatives for (Ev

S , Ev
I , V v)

and equicontinuity of the corresponding state sequence
(Ev

S , Ev
I , V v). There exists (E∗

S, E∗
I , V ∗) (see Arzel̈ı-

Ascoli Theorem [35],) such that on a subsequence,

(Ev
S , Ev

I , V v) → (E∗
S, E∗

I , V ∗) uniformly on [0, T ].

Next, we choose the proper subsequence passing the
limit to system (3.3) and corresponding to the con-
trols u∗

1(t), u∗
2(t), we can achieve the state solution

(E∗
S, E∗

I , V ∗). Then the lower semi-continuity of the L2

- norm with respect to L2 weak convergence implies
that,

inf
u1(t),u2(t)∈M

J
(
u1(t), u2(t)

)
= lim

v→∞ J
(
uv
1(t), u

v
2(t)

)

≥
∫ T

0

(
A1EI − A2ES + B1u

2
1(t) + B2u

2
2(t)

)

dt = J (E∗
S, E∗

I , V ∗).

Therefore, (E∗
S, E∗

I , V ∗) is an optimal control. ��
Theorem 6 Define an optimal control vector (u∗

1(t),
u∗
2(t)) ∈ M and the corresponding state solutions

(E∗
S , E∗

I , V ∗) in the model (3.3), there exist adjoint vari-
ables ϑ1(t), ϑ2(t), and ϑ3(t), satisfying,

ϑ′
1 = −

[
−A2 + ϑ1r

(
1 − 2ES

K

)
+ (ϑ2 − ϑ1)

(1 − u1(t))βV ] ,

ϑ′
2 = −

[
A1 − ϑ2δE + ϑ3(1 − u2(t))ηδE

]
,

ϑ′
3 = −

[
(ϑ2 − ϑ1)(1 − u1(t))βES − ϑ3δV

]
, (3.6)

with the transversality conditions: ϑ1(T ) = 0, ϑ2(T )
= 0, ϑ3(T ) = 0.
The optimal control vector (u∗

1(t), u
∗
2(t)) is given

below

u∗
1(t) = min

{
max

{
0,

(ϑ2 − ϑ1)βESV

2B1

}
, 1

}
,

u∗
2(t) = min

{
max

{
0,

ϑ3ηδEEI

2B2

}
, 1

}
. (3.7)
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Proof To apply the Pontryagin’s Minimum Principle,
we consider the Hamiltonian as:

H(ES, EI, V, ϑ1, ϑ2, ϑ3, u1(t), u2(t))
= A1EI − A2ES + B1u

2
1(t) + B2u

2
2(t)

+ϑ1

[
rES

(
1 − ES

K

)
− (1 − u1(t))βESV

]

+ϑ2

[
(1 − u1(t))βESV − δEEI

]

+ϑ3

[
(1 − u2(t))ηδEEI − δV V

]
.

Now, adjoint variables ϑ1(t) = 0, ϑ2(t) = 0, ϑ3(t) =
0 by:

ϑ′
1 = − ∂H

∂ES
, ϑ′

2 = − ∂H
∂EI

, ϑ′
3 = −∂H

∂V
,

with the transversality conditions ϑ1(T ) = 0, ϑ2(T ) =
0, ϑ3(T ) = 0. We get the characterization of optimal
controls by saying

∂H
∂u1

= 0 and
∂H
∂u2

= 0.

From ∂H/∂u1 = 0 and ∂H/∂u2 = 0, we get

u1(t) =
(ϑ2 − ϑ1)βESV

2B1
, u2(t) =

ϑ3ηδEEI

2B2
.

By considering the boundedness for u1(t) and u2(t)
into account, the characterization of optimal controls
are as follows:

u∗
1(t) = min

{
max

{
0,

(ϑ2 − ϑ1)βESV

2B1

}
, 1

}
,

u∗
2(t) = min

{
max

{
0,

ϑ3ηδEEI

2B2

}
, 1

}
.

Thus the proof is completed. ��

4 Numerical simulation

In this present section, we develop graphical displays of
the fixed control system (2.2) and optimal control sys-
tem (3.3), (3.4) and present the results. For fixed con-
trol problem, the drug efficacy ε1 and ε2 are updated.
Also for time dependent control, the controls u1(t) and
u2(t) are updated and are used to sole the state system
and adjoint system together. Optimal control is a two-
point boundary value problem with separate boundary
conditions at times t = 0 and t = T . Here our aim is
to solve this problem for the value of T = 100. This is
the value (in days) at which treatment is stopped. We
use a finite difference approach to solve the optimality
system (3.3)–(3.4) by applying the package BVP4C of
MATLAB. To solve the problem easily we use T = 1

and t = 0. The solution of the problem for T = 1 can be
used as an initial guess to the solution nearby such that
T = 1+ΔT , for ΔT sufficiently small. This process can
be continued until the required problem is solved and
this referred to as a homotopy path. By selecting dif-
ferent weight factors we can generate several treatment
schedules for various time periods. Here we illustrate
the 100 days treatment schedule. The optimal solution
trajectories are displayed below in Figs. (7, 8, 9) with
different weight constants keeping all other parameters
constant.

Here we study the following control strategies. To
study the efficiency of the drug therapy, we consider
three strategies as follows:

Strategy I: For this strategy, we observe that for
fixed control (in Fig. 5) the total number of uninfected
cells increases and infected cells number decreases with
increasing value of the antiviral drug efficacy (ε1) .

Figure 7 represents the effect of time dependent
antiviral drug which blocks infection. In this figure, we
observe that the number of infected cells along with
virus level decrease as we keep the drug level at its
maximum value throughout the treatment period.

Strategy II: For this strategy, we observe that for
fixed control (in Fig. 6) the total number of uninfected
cells increases and infected cells number decreases with
increasing value of the antiviral drug efficacy (ε2).

Figure 8 represents the effect of time dependent
antiviral drug which blocks new virus production.
In this figure, we observe that the number of virus
decreases as we keep the drug level at its maximum
value throughout the treatment period. But in this
strategy no such significant effect is observed in case
of infected cells.

Strategy III: Figure 9 represents the effect of time
dependent combination of antiviral drugs. In this fig-
ure, we observe that the number of infected cells along
with virus level decreases as we keep the drug level at
its maximum value throughout the treatment period.
The outcome of this strategy is almost similar to the
Strategy I.

4.1 Efficiency analysis

For Strategy I we consider u1(t) 	= 0, u2(t) = 0, for
Strategy II, u1(t) = 0, u2(t) 	= 0 and for Strategy III we
consider u1(t) 	= 0, u2(t) 	= 0. Here we shall calculate
the efficiency index E which is defined as

E =
(
1 − AC

AS

)
× 100%,

where AC represents the area under the infected cells
concentration as a function of time when the control is
used and AS is the area under the infected total popu-
lation curve in absence of control input. The cumulative
number of infected cells during the time interval [0, 1]
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Fig. 5 The system
behaviour of Strategy I for
fixed control
(ε1 �= 0, ε2 = 0)

Fig. 6 The system
behaviour of Strategy II
for fixed control
(ε1 = 0, ε2 �= 0)

Fig. 7 Simulations of the
SARS-CoV-2/COVID-19
model (3.3) showing the
effect of the optimal
strategies (u1 �= 0, u2 = 0)
for
A1 = A2 = 100, B1 = 300
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Fig. 8 Simulations of the
SARS-CoV-2/COVID-19
model (3.3) showing the
effect of the optimal
strategies (u1 = 0, u2 �= 0)
for A1 = A2 = 100, B2 =
70000

Fig. 9 Simulations of the SARS-CoV-2/ COVID-19 model (3.3) showing the effect of the optimal strategies (u1 �= 0, u2 �=
0) for A1 = A2 = 100, B1 = 300, B2 = 70000
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Table 3 Description of the different control strategies

Strategies Description

I Antiviral drug blocking infection
II Antiviral drug blocking production of viral particles
III Combination of antiviral drugs blocking infection and production

is defined by

A =
∫ 1

0

EI(t)dt.

By calculating the efficiency index we can adopt the
best strategy whose efficiency index will be the biggest
[41,42]. The values of AC and the efficiency indices for
two strategies are given in Table (4).

From the Table (4), we can conclude that Strategy I is
more effective than Strategy II. But Strategy III (which
is the combination of two drugs) is the best strategy.

4.2 Cost-effectiveness analysis

To compare the differences between the costs and
health outcomes of two alternative strategies, Incre-
mental Cost-Effectiveness Ratio (ICER) plays a crucial
role to select the best strategy. In the case of ICER,
when we compare two competing strategies, the best
strategy will be selected from less cost-effective ICER
values. To quantify the cost-effectiveness, the Incremen-
tal Cost-Effectiveness Ratio (ICER) is defined as

ICER =
The differences in intervention costs
The differences in averted infection

.

Based on the control model simulation, we calculate the
ICER for the strategies given below:

Strategies Total infection averted Total cost ICER

No control 0 0 -
I 252.21 7231 28.67
II 317.74 6888 -5.2342
III 798.90 1155 -11.9189

The ICER is calculated as follows:

ICER (I) =
7231

252.21
= 28.6700,

ICER (II) =
6888 − 7231

317.74 − 252.21
= −5.2342,

ICER (III) =
1155 − 6888

798.90 − 317.74
= −11.9189.

From the above Incremental Cost-Effectiveness Ratio
(ICER) table, it is clearly observed that Strategy I
is strongly dominated, which means that Strategy I
is more costly and less effective than other strategies.

Therefore, Strategy I is excluded from the set of alter-
natives since it is consumed by limited resources. We
recalculate ICER.

Strategies Total infection averted Total cost ICER

II 317.74 6888 21.6800
III 798.90 1155 -11.9149

With this result, we can conclude that Strategy III
(combination of drug therapy) has the least ICER and
therefore it is more cost-effective than Strategy II.
Hence the least cost-effective strategy is Strategy III.
Also weight constants B1 and B2 play a pivotal role for
choosing best strategy. Here, we analyse the strategies
for a particular weight constant. Further analysis with
different weight constants can give us more accurate
results.

5 Variable order fractional model of
SARS-CoV-2 dynamic

It has been proven that the fractions calculus is able to
provide more accurate results compared to its integer-
order counterpart. Hence, in this section, we propose
a new variable-order fractional model that considers
the SARS-CoV-2 dynamic. The proposed variable-order
fractional model is given by

c
0D

q(t)
t ES = rES

[
1 − ES

K

]
− [1 − u1(t)]βESV,

c
0D

q(t)
t E1 = [1 − u1(t)]βESV − δEEI,

c
0D

q(t)
t V = [1 − u2(t)]ηδEEI − δV V, (5.1)

where q(t) denotes the time-varying fractional-order
derivative. The fractional-order derivative is consid-
ered to change with respect to time as q(t) = 0.98 +
0.01 sin t

5 . Figure 10 shows the time history of the pro-
posed variable order model. As it is shown in this figure,
the value of fractional derivative significantly changes
the behavior of the system.

5.1 Optimal control

In 1970s the genetic algorithm has been invented by
John Holland [43]. To determine an optimum route,
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Table 4 Efficiency index for system (3.3)

Strategy A =
∫ 1

0
EI(t)dt

∑
=

(
1 − AC

AS

)
× 100%

No control 6.8125 × 105 0%
I 8.3168 × 103 98.78%
II 3.1575 × 106 53.65%
III 6.4450 × 103 98.96%

Fig. 10 The time history of the proposed model with different variable-order fractional models when ε1 = 0.2, ε2 = 0.

Table 5 Genetic algorithm configuration parameters

Parameter Value

Crossover fraction 0.9
Population size 80
Selection function Tournament
Mutation function Constraint-dependent
Crossover function Intermediate
Migration direction Forward
Migration fraction 0.25
Migration interval 30
Stopping criteria 30, 000

the genetic algorithm follows an iterative and stochas-
tic search approach. The genetic algorithm is estab-
lished based on Darwin’s survival-of-the-fittest method
in evolution. This algorithm evolves superior solutions
from a population of candidate solutions known as indi-
viduals. Based on a cost function, the population is
assessed, and the best options for reproducing and mat-
ing to generate the next generation are chosen. To now,
researchers have employed the genetic algorithm to han-
dle a broad array of issues in many disciplines of study
due to its interesting characteristics and strong conver-
gence [44,45]. To identify optimum antiviral drug treat-
ment, the genetic algorithm is applied. In this part, we
use objective function (3.2). The results of the genetic
algorithm are then used to obtain optimal antiviral
drug treatment. The genetic algorithm’s setup is shown
in Table 5.

The objective function of the genetic algorithm is
shown in Figure 11. As it is demonstrated, the applied
algorithm successfully minimizes the objective function.

Fig. 11 The normalized value of best cost function

The optimal value for control inputs are obtained as
u1 = 0.9989 and u2 = 0.0045.

The effect of the selected combination of the antiviral
drug is demonstrated in Fig. 12. As shown in this figure,
the number of infected cells along with viruses decreases
throughout the treatment period. Also, through this
optimal treatment, the production of viruses is blocked.

6 Discussion

We proposed the time-independent and time-dependent
control problem to keep the susceptible cells level high
and infected cells and virus level low. Also, our aim is to
minimize drug costs. Here we use two control strategies.
The first control input is described in terms of both sus-
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Fig. 12 Simulations of the variable order fractional SARS-CoV-2/COVID-19 model (5.1) showing the effect of the optimal
strategies

ceptible cells and virus and their corresponding adjoint
variables. It mainly blocks the infection or disease trans-
mission. The second control input is described in terms
of free virus generation and it acts to block new virus
production.

We have derived the expression of the basic reproduc-
tion number by using the next-generation approach. By
calculating the sensitivity index we have obtained that
the most sensitive parameters are the carrying capac-
ity of epithelial cells (K), rate of infection (β), and
the number of free viruses produced (η). PRCC results
showed the negative correlation with the parameters
δV , ε1, and ε2. Thus if the drug efficacy or the removal
rate of virus increases, the disease progression/ trans-
mission reduces.

Here the existence condition for optimal control prob-
lem has been derived. We have also found the opti-
mal treatment strategies by solving the correspond-
ing optimal system. Through efficiency analysis, it is
revealed that a combination of antiviral drug therapy
is almost 95.24% effective compared to other strate-
gies. Thus WHO suggests usage of the commonly used
antiviral drugs to fight against the COVID-19 infec-
tion. As a result, the death rate would be restricted
below 5% worldwide. Also, we have investigated the
cost-effectiveness of the controls to determine the best
strategies with minimum costs. By calculating ICER,
we found that Strategy III i.e. combination of drugs
therapy is the most effective therapy. Also, it has been
observed that the Strategy I is effective in eliminating
the disease. This strategy has the same effect as a com-
bination of drug therapy. But this single drug strategy
is not cost-effective as like as combination therapy.

7 Conclusion

In conclusion, SARS-CoV-2 infection poses significant
threats to public health and we are struggling through
it. In this paper, we have presented a deterministic
model depicting the dynamics of SARS-CoV-2 and
epithelial cells interaction. We have studied the model

using optimal control theory holding an effective control
measure against SARS-CoV-2 infection with the time-
dependent control mechanisms (u1(t), u2(t)). Here (1−
u1(t)) and (1−u2(t)) represent the efforts that prevent
failure of the treatment in drug-sensitive SARS-CoV-2
infection. From our analytical and numerical findings
the following results are observed:
(i). The model exhibits a disease-free equilibrium that
is locally asymptotically stable if R0 < 1 and would be
unstable when R0 > 1.
(ii). Carrying capacity (K), rate of infection (β), and
number of new virions produced from the infected cells
(η) are the most sensitive parameters.
(iii). Antiviral drug therapy has a positive impact in
reducing viral load. The total number of infected cells
and virus load can be reduced by the application of time
dependent control.
(iv). Both Strategy I and Strategy III are effective with
98% effective index.
(v). Strategy III (combination of drug therapy) is the
most cost-effective control strategy.

Finally, a variable fractional-order model of the
COVID-19 Kinetics was introduced. In the proposed
model, it is supposed that the value of the fractional
derivative is changing with respect to time. Then, using
the genetic algorithm optimization, an optimal treat-
ment was proposed for the variable order fractional
model. In a future study, we will investigate the control
of the proposed variable order model through a multi-
objective optimization method.
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