
Eur. Phys. J. Spec. Top. (2022) 231:3371–3380
https://doi.org/10.1140/epjs/s11734-022-00433-9

THE EUROPEAN
PHYSICAL JOURNAL
SPECIAL TOPICS

Regular Article

A mechanistic model for airborne and direct
human-to-human transmission of COVID-19: effect of
mitigation strategies and immigration of infectious
persons
Saheb Pal1,a and Indrajit Ghosh2,b

1 Department of Mathematics, Visva-Bharati, Santiniketan 731235, India
2 Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India

Received 19 October 2021 / Accepted 18 December 2021 / Published online 13 January 2022
© The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of
Springer Nature 2022

Abstract The COVID-19 pandemic is the most significant global crisis since World War II that affected
almost all the countries of our planet. To control the COVID-19 pandemic outbreak, it is necessary to
understand how the virus is transmitted to a susceptible individual and eventually spread in the commu-
nity. The primary transmission pathway of COVID-19 is human-to-human transmission through infectious
droplets. However, a recent study by Greenhalgh et al. (Lancet 397:1603–1605, 2021) demonstrates 10
scientific reasons behind the airborne transmission of SARS-COV-2. In the present study, we introduce a
novel mathematical model of COVID-19 that considers the transmission of free viruses in the air beside
the transmission of direct contact with an infected person. The basic reproduction number of the epidemic
model is calculated using the next-generation operator method and observed that it depends on both the
transmission rate of direct contact and free virus contact. The local and global stability of disease-free equi-
librium (DFE) is well established. Analytically it is found that there is a forward bifurcation between the
DFE and an endemic equilibrium using central manifold theory. Next, we used the nonlinear least-squares
technique to identify the best-fitted parameter values in the model from the observed COVID-19 mortality
data of two major districts of India. Using estimated parameters for Bangalore urban and Chennai, differ-
ent control scenarios for mitigation of the disease are investigated. Results indicate that the vaccination of
susceptible individuals and treatment of hospitalized patients are very crucial to curtailing the disease in
the two locations. It is also found that when a vaccine crisis is there, the public health authorities should
prefer to vaccinate the susceptible people compared to the recovered persons who are now healthy. Along
with face mask use, treatment of hospitalized patients, and vaccination of susceptibles, immigration should
be allowed in a supervised manner so that economy of the overall society remains healthy.

1 Introduction

The current outbreak of coronavirus disease 2019
(COVID-19) has significantly affected public health
and the economy worldwide. As of 21 November 2021,
more than 257 million COVID-19 cases and 5 million
deaths have been reported globally [6]. COVID-19 is
an emerging respiratory infectious disease that was first
detected in early December 2019 in Wuhan, China. The
virus that causes COVID-19 is severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), which spread
rapidly throughout the globe. The World Health Orga-
nization (WHO) initially declared the COVID-19 out-
break as a public health emergency of international con-
cern but with the spread across and within countries
leading to a rapid increase in the number of cases, the

a e-mail: saheb92.math@gmail.com
b e-mail: indra7math@gmail.com (corresponding author)

outbreak was officially declared a global pandemic on
11 March 2020 [47]. Given the global scenario on the
series of waves and unprecedented strains of COVID-
19, there is a need for more investigation to timely and
effectively curtail the spread of the disease.

Mathematical modelling is a very versatile and effec-
tive instrument for understanding infectious disease
transmission dynamics and helps us to develop pre-
ventive measures for controlling the infection spread
both qualitatively and quantitatively. To model the epi-
demiological data of infectious diseases, compartmental
models are widely used due to their simplicity and well-
studied applications [18]. In this regard, the recent epi-
demiological threat of COVID-19 is not an exception. In
such types of models, the population is categorized into
several classes, or compartments, based on the stage of
the infection that is affecting them. These models are
governed by a system of ordinary differential equations
that take into account the time-discoursed infection sta-
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tus of the population compartments. Wu et al. [49] first
developed a mathematical model for COVID-19 which
is based on Susceptible–Exposed–Infectious–Recovered
(SEIR) model and explains the transmission dynamics
and estimate the national and global spread of COVID-
19. After that, various mathematical models were pro-
posed by considering several stages of susceptible and
infected populations [19,36]. Many researchers studied
the dynamics of COVID-19 using real incidence data of
the affected countries and examined different charac-
teristics of the outbreak as well as evaluated the effect
of intervention strategies implemented to suppress the
outbreak in respective countries [14,27,41]. In addi-
tion, a comparative analysis of the most affected coun-
tries during the second wave of COVID-19 was done by
Easwaramoorthy et al. [10] using fractal-based prognos-
tic model.

Presently, the second wave of COVID-19 is affect-
ing most of the countries in the world. In a densely
populated country like India, this scenario is more
threatening. On April 15, 2021, the daily cases of
COVID-19 were double the first peak. However, The
epidemic evolution of the country is quite complex due
to regional inhomogeneities. Thus, governments of var-
ious states in India are adopting different strategies to
control the outbreak, such as wearing masks, vaccina-
tion drives, social distancing guidelines, partial lock-
downs, and restricted store hours in place. Thus, gain-
ing an understanding of how this outbreak spread in the
form of waves and possible interventions on a short-
term basis is urgent. As of 21 November 2021, more
than 34 million COVID-19 cases and more than 465
thousand deaths are reported in India [7]. We have cho-
sen to concentrate on two major districts namely, Ban-
galore urban and Chennai of India for our case studies.
These two districts are very crucial hubs of south India
and are experiencing a severe second wave of COVID-
19. Additionally, taking small regions is also necessary
to make reliable projections using mechanistic mathe-
matical models. Due to the small area and populations,
it is also easy to implement and supervise specific con-
trol measures.

As a case study in India, several researchers proposed
models that are fitted to the daily COVID-19 cases
and deaths, and examined different control strategies
[13,15,17,19,28,34,36]. Some of the studies explore the
vaccine allocation strategy in India due to limited sup-
ply and to support relevant policies [12]. Regarding the
upcoming wave of COVID-19 in India, Kavitha et al.
[17] discussed the epidemic rate in the provinces of India
by considering the SIR and fractal models and notify-
ing that there is a possibility of a third wave during
the first week of August 2021. However, none of the
above studies has considered the airborne transmission
of the SARS-COV-2 virus in their respective models
with application to Indian districts.

To control a pandemic outbreak, it is necessary to
understand how the virus transmits to a suscepti-
ble individual and eventually spreads in the commu-
nity. The primary transmission pathway of COVID-
19 is human-to-human propagation through infectious

droplets [45]. However, a recent study by Greenhalgh
et al. [16] suggests that SARS-COV-2 can be trans-
mitted through the air and they showed 10 scientific
reasons behind this. Later on, Addleman et al. [1] com-
mented that Canadian public health guidance and poli-
cies should be updated to address the airborne mode of
transmission. The authors also suggested that address-
ing airborne transmission requires the expertise of inter-
disciplinary teams to inform solutions that can end this
pandemic faster. Motivated by these scientific pieces of
evidence, we consider a compartmental model of SEIR-
type including shedding of free virus in the air by infec-
tious persons. To the best of our knowledge, this is
the first modelling study that considers the airborne
transmission of COVID-19 with applications to Indian
districts. We consider that the susceptible population
becomes exposed in two different ways: firstly through
direct contact with an infected population or touches a
surface that has been contaminated. This transmission
also occurs through large and small respiratory droplets
that contain the virus, which would occur when near
an infected person. The next is through the airborne
transmission of smaller droplets and particles that are
suspended in the air over longer distances and time [11].
We also study the effect of immigration along with pop-
ular control strategies. The main focus of our study is
to explore the following epidemiological issues:

– Mathematically analyze the COVID-19 transmis-
sion dynamics by incorporating the airborne path-
way of free SARS-CoV-2 virus into the model struc-
ture.

– Impact of anti-COVID drugs on the reduction of
hospitalized persons.

– Individual and combined effects of various control
measures (use of face mask, vaccination) as well as
immigration of infectious persons on the COVID-19
pandemic.

The remainder of this paper is organized as follows.
In the next section, we propose a deterministic com-
partmental model to describe the disease transmission
mechanism. We consider the amount of free virus in
the air as a dynamic variable. Section 3 describes the
theoretical analysis of the model, which incorporates
the existence of positive invariance region, bounded-
ness of solutions, computation of the basic reproduction
number, and stability of disease-free equilibrium. Also,
in this section, the existence of forward bifurcation of
the model system is explored. In Sect. 4, we fit the
mathematical model using nonlinear least-squares tech-
nique from the observed mortality data and estimate
unknown parameters. Section 5 describe several con-
trol mechanisms and immigration of infectives through
numerical simulation. We examine the effects of vacci-
nation, treatment by drugs, and use of face masks with
different degrees of efficacy as intervention strategies.
Finally, in Sect. 6 we discuss the findings and some
concluding remarks about mitigation strategy obtained
from our study.
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2 Model description

To design the basic mathematical model for COVID-
19 transmission dynamics, some general epidemiologi-
cal factors are considered including the airborne trans-
mission of the free virus. Several studies of novel coro-
navirus suggest that an infected person can be asymp-
tomatic (infectious but not symptomatic) or symp-
tomatic with small, moderate, severe, or critical symp-
toms [23,46,50,51]. For simplicity of model formulation,
we break the infected individuals into two separated
classes, notified and un-notified. Here, the un-notified
class contains untested asymptomatic, asymptomatic
who are tested negative, untested symptomatic, and
symptomatic who are tested negative, whereas noti-
fied class contains those symptomatic and asymp-
tomatic persons who are tested COVID-19 positive.
Population among both the notified and un-notified
class can be hospitalized, when they have a criti-
cal health situation. Thus the entire population can
be stratified into six main compartments based on
the status of the disease: susceptible (S(t)), exposed
(E(t)), un-notified (Iu(t)), notified (In(t)), hospital-
ized (Ih(t)), and recovered (R(t)), at time t. Conse-
quently, the total population size is given by N(t) =
S(t) + E(t) + Iu(t) + In(t) + Ih(t) + R(t). In addi-
tion, V (t) describes the amount of free virus in the
environment.

Now, we consider individuals from each human class
have a per capita natural mortality rate μ. The net
influx rate of susceptible population per unit time is
Π. This parameter includes new births, immigration,
and emigration of susceptible persons. Also, the sus-
ceptible population decrease after infection, acquired
through the direct contact of notified or un-notified
infected individuals. Let β1 be the transmission rate
for direct contact with the modification factor ν for
notified infected individuals. Then ν ∈ (0, 1), since the
notified persons are advised to take preventive mea-
sures like face mask use, social distancing more seri-
ously. In addition, the susceptible population is infected
through the contact of the free virus in air [1,16].
Let β2 be the transmission rate for free virus con-
tact. The interaction of susceptible individuals with
infected individuals (un-notified or notified) follows
standard mixing incidence and with free virus fol-
lows mass action incidence. For basic details and dif-
ference between standard mixing incidence and mass
action incidence, interested readers are referred to
the third chapter of Martcheva’s book [29]. Then
the differential equation that describes the rate of
change of susceptible individuals at time t, is given
by

dS

dt
= Π − β1S(Iu + νIn)

N
− β2SV − μS + θR.

Here, θ be the rate at which recovered individuals
eventually lose the temporal immunity from the infec-
tion and become susceptible [12,35].

Alongside, the exposed population (E(t)) who are
infected individuals, however still not infectious for the
community. By making successful contact with infec-
tives, susceptible individuals become exposed. Also,
these people decrease at a rate γ and become notified
or un-notified. The probability that exposed individu-
als progress to the notified infectious class is p and that
of the un-notified class is 1 − p. This assumption leads
to the following rate of change in E:

dE

dt
=

β1S(Iu + νIn)
N

+ β2SV − (γ + μ)E.

The un-notified individuals (Iu), who are transferred
from exposed class at a rate (1 − p)γ are the pop-
ulation who are un-notified from COVID-19 disease.
Also, the un-notified individuals progress to hospital-
ized class at a rate ηu and recovered at a rate σu.
The un-notified individuals are assumed to have no
disease-induced mortality rate as most of them will
not develop severe symptoms. However, if some of
the un-notified persons develop sudden severe symp-
toms, they will be transferred to the hospital and
die as a hospitalized patients. Thus, the equation
governing the rate of change of un-notified persons
is

dIu

dt
= (1 − p)γE − (ηu + σu + μ)Iu.

The notified individuals (In), who are transferred
from exposed class at a rate pγ are the population
who are notified as COVID-19 positive people. Also,
the notified individuals reduced by progressing to hos-
pitalized class at a rate ηn, by recovery at a rate σn,
and COVID-19 induced mortality rate δn. Therefore,
we have the following equation

dIn

dt
= pγE − (ηn + σn + μ + δn)In.

The hospitalized individuals (Ih) increase from un-
notified or notified people at rates ηn or ηu, respec-
tively. Also, this class of people recover at a rate σh and
decrease through COVID-19 induced mortality rate δh.
Thus, we have the following rate of change of Ih:

dIh

dt
= ηuIu + ηnIn − (σh + μ + δh)Ih.

The recovered individuals (R) increase by recovering
from each of the infected classes (un-notified, notified
and hospitalized) at rates σu, σn, and σh respectively.
As mentioned earlier, θ is the rate at which the recov-
ered population loses immunity against COVID-19 and
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Fig. 1 Schematic diagram of the proposed model. Solid
arrows represent the transmission rate from one compart-
ment to other, whereas dashed arrows represent the inter-
action between compartments

becomes susceptible again. Thus, the following differ-
ential equation leads to the rate of change of R:

dR

dt
= σuIu + σnIn + σhIh − (θ + μ)R.

The differential equation describing the rate of change
of free virus, increased from the shedding rate of un-
notified and notified patients at rates αu and αn,
respectively with a natural clearance rate μc. Thus

dV

dt
= αuIu + αnIn − μcV.

Figure 1 describes the flow patterns of individuals
between compartments over time.

Assembling all the above differential equations, we
have the following system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= Π − β1S(Iu+νIn)

N − β2SV − μS + θR,

dE

dt
= β1S(Iu+νIn)

N + β2SV − (γ + μ)E,

dIu

dt
= (1 − p)γE − (ηu + σu + μ)Iu,

dIn

dt
= pγE − (ηn + σn + μ + δn)In,

dIh

dt
= ηuIu + ηnIn − (σh + μ + δh)Ih,

dR

dt
= σuIu + σnIn + σhIh − (θ + μ)R,

dV

dt
= αuIu + αnIn − μcV.

(1)

All the parameters involved in the above system are
positive. We present the parameters with their biolog-
ical interpretation, dimensions, and realistic values in
Table 1.

3 Mathematical analysis

3.1 Basic properties

Here, we explore the basic dynamical properties of the
model (1). Let us first consider the initial conditions of
the model as

S(0) > 0, E(0), Iu(0), In(0), Ih(0), R(0), V (0) ≥ 0.

(2)

The dynamical system (1) is well posed as shown in the
following theorem.

Theorem 1 Consider the model (1) with initial con-
ditions (2). The nonnegative orthant R

7
+ is invariant

under the flow of (1), including S remaining positive
with the advancement of time. Moreover, the solutions
of the system (1) are bounded in the region

Ω =
{

(S, E, Iu, In, Ih, R, V )| 0 < S + E + Iu + In

+Ih + R ≤ Π
μ

, 0 ≤ V <
Π(αu + αn)

μμc

}

.

Proof Consider the initial conditions (2). Suppose that
at time t = t1, S(t1) = 0. Then from (1) at t = t1,
dS
dt = Π + θR > 0 which implies that dS

dt > 0 when
S is positive and small. Thus, there is no time t1 such
that S(t1) = 0. Therefore, S stays positive for t > 0
with the initial condition S(0) > 0. Now, for the other
components

dE

dt

∣
∣
∣
∣
E=0

=
β1S(Iu + νIn)

N
+ β2SV ≥ 0,

dIu

dt

∣
∣
∣
∣
Iu=0

= (1 − p)γE ≥ 0,

dIn

dt

∣
∣
∣
∣
In=0

= pγE ≥ 0,

dIh

dt

∣
∣
∣
∣
Ih=0

= ηuIu + ηnIn,≥ 0,

dR

dt

∣
∣
∣
∣
R=0

= σuIu + σnIn + σhIh,≥ 0,

dV

dt

∣
∣
∣
∣
V =0

= αuIu + αnIn ≥ 0.

Thus, all the other components are nonnegative and the
orthant R

7
+ is invariant under (1).

To show the boundedness of solutions of the system
(1), we add all the equations except the last one of (1)
to get

dN

dt
=

d
dt

(S + E + Iu + In + Ih + R)

= Π − μN − δnIn − δhIh

≤ Π − μN.
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Table 1 Description of model parameters used in the model (1)

Parameter Dimension Interpretation Value(s) References

Π person day−1 Recruitment rate of suscepti-
bles

μ × Ninit –

β1 day−1 Transmission rate for direct
contact

(0,1) To be estimated

β2 copies−1 litre day−1 Transmission rate for free
virus contact

(0,1) To be estimated

ν unitless Modification factor for noti-
fied infectives

0.1852 [13]

θ day−1 Rate at which recovered indi-
viduals lose immunity

1/365 [12]

μ day−1 Natural mortality rate 0.3891 ×10−4 [8]
γ day−1 Rate at which the exposed

individuals are infected
0.2 [21,22]

ηu day−1 Rate at which un-notified
patients become hospitalized

(0,1) To be estimated

ηn day−1 Rate at which notified
patients become hospitalized

(0,1) To be estimated

p unitless Proportion of notified infec-
tives

0.2 [50,52]

σu day−1 Recovery rate of un-notified
patients

0.17 [42,48]

σn day−1 Recovery rate of notified
patients

0.072 [24]

σh day−1 Recovery rate of hospitalized
patients

(0,1) To be estimated

δn day−1 Disease induced mortality
rate of notified patients

0.0017 [13]

δh day−1 Disease induced mortality
rate of hospitalized patients

(0,1) To be estimated

αu copies litre−1 person−1 day−1 Virus shedding rate of un-
notified patients

(0,10) To be estimated

αn copies litre−1 person−1 day−1 Virus shedding rate of notified
patients

(0,10) To be estimated

μc day−1 Natural clearance rate of free
virus

1 [32]

Using the results of differential inequality, we have

lim sup
t→∞

N(t) ≤ Π
μ

.

Since the total population is bounded, so the individual
components are also bounded.
Also, from the last equation of (1), the rate of change
of free virus is given by

dV

dt
= αuIu + αnIn − μcV

< (αu + αn)
Π
μ

− μcV

Again, using the results of differential inequality, we
have

lim sup
t→∞

V (t) <
Π(αu + αn)

μμc
.

This completes the proof. ��

3.2 Disease-free equilibrium and basic reproduction
number

As of many epidemiological models, our model (1) also
exhibits the disease-free equilibrium (DFE). At this
equilibrium, the population persists in the absence of
disease. Mathematically, DFE is obtained by assum-
ing all the infected compartments to be zero, i.e.,
E, Iu, In, Ih, and V to be zero. Then from the model,
S = Π

μ and R = 0. Thus, the DFE is given by
Es = (Π

μ , 0, 0, 0, 0, 0, 0).
The basic reproduction number R0 is interpreted as

the average number of secondary cases produced by
one infected individual introduced into a population of
susceptible individuals. This dimensionless number is
a measure of the potential for disease outbreaks. Now
to obtain R0, we use next-generation operator method
[9,43].
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First we assemble the compartments which are
infected (i.e., E, Iu, In, Ih, and V ) and decomposing
the right hand side of the system (1) as F −W , where
F is the transmission part, expressing the production
of new infection, and the transition part is W , which
describe the rate of transfer of individuals from one
compartment to another. Then we have for the model
(1)

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

β1S(Iu+νIn)
N + β2SV

0

0

0

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

and

W =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

(γ + μ)E

−(1 − p)γE + φuIu

−pγE + φnIn

−ηuIu − ηnIn + φhIh

−αuIu − αnIn + μcV

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

with φu = ηu + σu + μ, φn = ηn + σn + μ + δn, and
φh = σh + μ + δh.
Consider X = (E, Iu, In, Ih, V ). Then the derivatives of
F and W at the DFE Es are given by

F =
∂F

∂X
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 β1 β1ν 0 β2Π
μ

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

and

W =
∂W

∂X
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

(γ + μ) 0 0 0 0

−(1 − p)γ φu 0 0 0

−pγ 0 φn 0 0

0 −ηu −ηn φh 0

0 −αu −αn 0 μc

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Now, we calculate the next-generation matrix FW−1,
whose (i, j)-th entry describes the expected number
of new infections in compartment i produced by the
infected individual originally introduced into compart-
ment j. According to Diekmann et al. [9], the basic
reproduction number is given by R0 = ρ(FW−1),
where ρ is the spectral radius of the next-generation
matrix FW−1. A simple calculation leads to the fol-
lowing expression for R0:

R0 =
(1 − p)γβ1

φu(γ + μ)
+

pγνβ1

φn(γ + μ)
+

(1 − p)γαuβ2(Π/μ)
μcφu(γ + μ)

+
pγαnβ2(Π/μ)
μcφn(γ + μ)

. (3)

Epidemiologically, the first and second terms of R0 can
be interpreted as the number of secondary infections
that one un-notified and notified individual will produce
in a completely susceptible population during its infec-
tious period, respectively. Here, the infection occurs due
to direct contact. Also, the last two terms represent the
same but for free virus contact. Thus, both transmission
pathways have impacts on the dynamics of COVID-19
spread in the community.

3.3 Stability of disease-free equilibrium

Following theorem gives the local stability properties of
the DFE Es = (Π

μ , 0, 0, 0, 0, 0, 0).

Theorem 2 The disease-free equilibrium (DFE) Es =
(Π

μ , 0, 0, 0, 0, 0, 0) of the system (1) is locally asymptot-
ically stable if R0 < 1 and unstable if R0 > 1.

Proof The Jacobian matrix at the DFE Es is given by

JE s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μ 0 −β1 −νβ1 0 θ −Πβ2
μ

0 −(γ + μ) β1 νβ1 0 0 Πβ2
μ

0 (1 − p)γ −φu 0 0 0 0

0 pγ 0 −φn 0 0 0

0 0 ηu ηn −φh 0 0

0 0 σu σn σh −(θ + μ) 0

0 0 αu αn 0 0 −μc

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(4)

with φu = ηu + σu + μ, φn = ηn + σn + μ + δn, and
φh = ηh + μ + δh.
The above Jacobian matrix possess three obvious eigen-
values −μ, −(θ + μ) and −φh = −(σh + μ + δh), which
are all negative. Also, the remaining eigenvalues (λ) are
the roots of the equation det(M − λI) = 0, where I is
the 4 × 4 identity matrix and

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−(γ + μ) β1 νβ1
Πβ2

μ

(1 − p)γ −φu 0 0

pγ 0 −φn 0

0 αu αn −μc

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Now, det(M − λI) = 0 gives

(λ + μc)(λ + φn)(λ + φu)(λ + γ + μ)
− (1 − p)γβ1(λ + μc)(λ + φn)
− pγνβ1(λ + μc)(λ + φu)

− (1 − p)γαu
Πβ2

μ
(λ + φn) − Πβ2

μ
pγαn(λ + φu) = 0.
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The above equation can be written as H(λ) = 1, where

H(λ) =
(1 − p)γβ1

(λ + φu)(λ + γ + μ)
+

pγνβ1

(λ + φn)(λ + γ + μ)

+
(1 − p)γαuβ2(Π/μ)

(λ + μc)(λ + φu)(λ + γ + μ)

+
pγαnβ2(Π/μ)

(λ + μc)(λ + φn)(λ + γ + μ)
.

(5)

We also rewrite H(λ) as

H(λ) = H1(λ) + H2(λ) + H3(λ) + H4(λ),

where Hj(λ), j = 1, 2, 3, 4, are the respective term of
(5). Now, if Re(λ) ≥ 0 with λ = x + iy, then

|H1(λ)| =
(1 − p)γβ1

|λ + φu||λ + γ + μ| ≤ H1(x) ≤ H1(0).

Analogously,

|Hj(λ)| ≤ Hj(x) ≤ Hj(0), for j = 2, 3, 4.

Then

|H(λ)| ≤|H1(λ)| + |H2(λ)| + |H3(λ)| + |H4(λ)|
≤H1(0) + H2(0) + H3(0) + H4(0)
=H(0).

From (3) and (5), we have H(0) = R0. Then R0 < 1
=⇒ |H(λ)| < 1, which implies there does not exist any
solutions of H(λ) = 1 with Re(λ) ≥ 0.

Therefore if R0 < 1, all the eigenvalues of H(λ) = 1
have negative real parts and hence the DFE Es of the
system (1) is locally asymptotically stable.
Now for the case of R0 > 1, i.e., H(0) > 1

lim
λ→∞

H(λ) = 0.

Then there exists λ∗ > 0 such that H(λ∗) = 1, which
confirm the existence of positive eigenvalue of the Jaco-
bian matrix JEs

. Thus the DFE Es is unstable for
R0 > 1. ��

Moreover, when R0 < 1 the DFE Es is globally
asymptotically stable, which can be assured by the fol-
lowing theorem.

Theorem 3 The disease-free equilibrium (DFE) Es =
(Π

μ , 0, 0, 0, 0, 0, 0) of the system (1) is globally asymptot-
ically stable if R0 < 1.

Proof First we rewrite the model (1) into the form
⎧
⎪⎪⎨

⎪⎪⎩

dX
dt

= P (X,Z),

dZ
dt

= Q(X,Z)
(6)

where X
T = (S,R) ∈ R

2
+ with S > 0, describe the

uninfected compartments and Z
T = (E, Iu, In, Ih, V ) ∈

R
5
+ describe the infected compartments with free virus.

Also, T denoting the transpose of the matrix. Note that
Q(X,0) = 0, where 0 is a zero vector.

Following Castillo-Chavez et al. [4], the DFE Es of
the system (6) is globally asymptotically stable if it is
locally asymptotically stable and satisfy following two
conditions:

(H1) For the subsystem dX
dt = P (X,0), the equilibrium

X
∗ is globally asymptotically stable,

(H2) Q(X,Z) = BZ− Q̃(X,Z), Q̃(X,Z) ≥ 0 for (X,Z) ∈
Ω,

where B = ∂Q
∂Z

∣
∣
∣
∣
(X,Z)=(X∗,0)

is a Metzler matrix (a

matrix whose off diagonal elements are nonnegative)
and Ω is the positive invariant set for the model (1) as
described in Sect. 3.1.
Now, for the model (1),

P (X,0) =
(

Π − μS

0

)

.

Since all the infected compartments are zero, so there
is no infection, and thus, no recovery. For this reason,
we consider R = 0. Clearly, X

∗ = (Π
μ , 0) is a glob-

ally asymptotically equilibrium for the system dX
dt =

P (X,0). So the condition (H1) is satisfied. Now,

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−(γ + μ) β1 β1ν 0 β2Π
μ

(1 − p)γ −φu 0 0 0

pγ 0 −φn 0 0

0 ηu ηn −φh 0

0 αu αn 0 −μc

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and

Q̃(X,Z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1

(
1 − S

N

)
Iu + β1ν

(
1 − S

N

)
In + β2

(
Π
μ

− S
)

V

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with φu = ηu + σu + μ, φn = ηn + σn + μ + δn, and
φh = ηh + μ + δh.
The matrix B is a Metzler matrix and Q̃(X,Z) ≥ 0
whenever the state variables are inside the invariant
set Ω. Thus (H2) is also satisfied. This completes the
proof. ��

3.4 Existence of endemic equilibrium

Here, we discuss the existence of endemic equilibrium
of the model (1). The endemic equilibrium E ∗ =
(S∗, E∗, I∗

u, I∗
n, I∗

h, R∗, V ∗) is given by I∗
u = A1E

∗,
In = A2E

∗, I∗
h = A3E

∗, R = A4E
∗, V ∗ = A5E

∗,
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S∗ = Π+(θA4−(γ+μ))E∗

μ = (γ+μ)(Π−A7E∗)
A6+β2A5(Π−A7E∗) , where all

the Ai, i = 1, 2, . . . , 7, are positive and given by

A1 =
(1 − p)γ

ηu + σu + μ
, A2 =

pγ

ηn + σn + μ + δn
,

A3 =
ηuA1 + ηnA2

σh + μ + δh
,

A4 =
σuA1 + σnA2 + σhA3

θ + μ
, A5 =

αuA1 + αnA2

μc
,

A6 = μβ1(A1 + νA2),
A7 = δnA2 + δhA3,

and E∗ is a positive root of the quadratic equation

ρ0E
2 + ρ1E + ρ2 = 0 (7)

with

ρ0 = −β2A5A7(θA4 − (γ + μ)),

ρ1 = (A6 + β2A5Π)(θA4 − (γ + μ)) − β2A5A7Π

+ μ(γ + μ)A7

= μ(γ + μ)R0(θA4 − (γ + μ)) + μ(γ + μ)(1 −R0)A7

+ A6A7,

ρ2 = (A6 + β2A5Π)Π − μ(γ + μ)Π = μ(γ + μ)Π(R0 − 1).

For the existence of real roots of (7), we must have
ρ2
1 − 4ρ0ρ2 ≥ 0. Without loss of generality, assume that

E∗
1 > E∗

2 , when Eq. (7) have two real roots. From the
expression of S∗, S∗ = Π

μ + (θA4−(γ+μ))
μ E∗. Since the

upper bound of total population is Π/μ, so we must
have θA4−(γ+μ) < 0. Then ρ0 is always positive. Note
that, for θA4−(γ+μ) = 0, S∗ = Π

μ and thus the endemic
equilibrium becomes DFE. Also, ρ2 < (>)0 ⇐⇒ R0 <

(>)1. At the equilibrium density, N∗ = Π−A7E∗
μ . Thus,

N∗ > 0 ⇐⇒ Π−A7E
∗ > 0. Keeping all the conditions

in mind, in the next theorem, we state the existence and
the possible number of endemic equilibrium points.

Theorem 4 When R0 < 1, the model (1) has unique
endemic equilibrium if Π − A7E

∗ > 0. When R0 > 1,
the model (1) has

1. two endemic equilibrium if ρ1 < 0, ρ2
1 − 4ρ0ρ2 > 0,

and Π − A7E
∗
i > 0, i = 1, 2.

2. unique endemic equilibrium if any of the following
cases holds

(a) ρ1 < 0, ρ2
1 − 4ρ0ρ2 > 0, and E∗

1 > Π
A7

> E∗
2 ,

(b) ρ1 < 0, ρ2
1 − 4ρ0ρ2 = 0, Π − A7E

∗ > 0,

3. no endemic equilibrium otherwise.

3.5 Analysis of the center manifold near DFE Es
when R0 = 1

In this subsection, we discuss the nature of DFE Es

when R0 = 1. Recall the Jacobian matrix JEs
from (4).

Notice that, when R0 = 1, JEs
possess a zero eigen-

value. So the equilibrium Es becomes non-hyperbolic.
Then the center manifold theory is the best approach to
study the behaviour of this equilibrium. In this regard,
we follow Theorem 4.1 described in Castillo-Chavez and
Song [5].

To proceed, first we write the mathematical model
(1) into the vector form dx

dt = f(x), with x =
(x1, x2, x3, x4, x5, x6, x7)T = (S, E, Iu, In, Ih, R,
V )T and f(x) = (f1(x), f2(x), . . . , f7(x))T. Since R0

is often inconvenient to use directly as a bifurcation
parameter, we introduce β1 as a bifurcation parameter.
Then R0 = 1 gives

β1 =
μc(γ + μ)φuφn − γβ2(Π/μ)((1 − p)αuφn + pαnφu)

μcγ((1 − p)φn + νpφu)

= β∗
1 (say).

Moreover, R0 < 1 for β1 < β∗
1 and R0 > 1 for β1 > β∗

1 .
Now, consider the system dx

dt = f(x, β1) and at β1 = β∗
1

the Jacobian matrix JEs
have simple zero eigenvalue

and all the other eigenvalues have negative real parts.
Let v = (v1, v2, . . . , v7) and w = (w1, w2, . . . , w7)T
are the respective left and right eigenvectors corre-
sponding to zero eigenvalue. Simple algebraic calcula-
tions lead us to the following expressions of vi and wi,
i = 1, 2, . . . , 7:

v1 = 0 = v5 = v6, v2 = v2 > 0,

v3 =
1
φu

(

β∗
1 +

β2αuΠ
μμc

)

v2,

v4 =
1
φn

(

β∗
1ν +

β2αnΠ
μμc

)

v2,

v7 =
β2Π
μμc

v2,

and

w1 =
1
μ

[
θ

θ + μ

{
(1 − p)γ

φu

(

σu +
σhηu

φh

)

+
pγ

φn

(

σn +
σhηn

φh

)}

− (γ + μ)
]

w2,

w2 = w2 > 0, w3 =
(1 − p)γ

φu
w2, w4 =

pγ

φn
w2,

w5 =
1
φh

(
(1 − p)γηu

φu
+

pγηn

φn

)

w2,

w6 =
1

θ + μ

[
(1 − p)γ

φu

(

σu +
σhηu

φh

)

+
pγ

φn

(

σn +
σhηn

φh

)]

w2,

w7 =
1
μc

(
(1 − p)γαu

φu
+

pγαn

φn

)

w2.

Clearly, all the vi and wi (i = 1, 2, . . . , 7) are positive
except w1. From the expression of w1, note that w1 =
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1
μ (θA4 − (γ + μ))w2. Also, since θA4 − (γ + μ) < 0,
so w1 < 0. Now, according to the Theorem 4.1 [5], we
calculate the quantities a and b, which are defined by

a =
7∑

k,i,j=1

vkwiwj
∂2fk

∂xi∂xj
, (8)

b =
7∑

k,i=1

vkwi
∂2fk

∂xi∂β1
, (9)

where all the partial derivatives are evaluated at the
DFE Es and β1 = β∗

1 . Since v1 is zero and fk, k =
3, 4, . . . 7 are linear functions of the state variables, so
we need to calculate only ∂2f2

∂xi∂xj
. Then we have

∂2f2

∂x1∂x7
= β2,

∂2f2

∂x2∂x3
= −β∗

1μ

Π
=

∂2f2

∂x3∂x5
=

∂2f2

∂x3∂x6
,

∂2f2

∂x3∂x4
= −β∗

1μ(1 + ν)

Π
,

∂2f2

∂x2
3

= −2β∗
1μ

Π
,

∂2f2

∂x2∂x4
= −β∗

1μν

Π
=

∂2f2

∂x4∂x5
=

∂2f2

∂x4∂x6
,

∂2f2

∂x2
4

= −2β∗
1μν

Π
,

and the rest of the derivatives are zero. Thus from (8),
we have

a = v2

[

β2w1w7 − β∗
1μ

Π
{w3(w2 + 2w3 + w4 + w5 + w6)

+νw4(w2 + w3 + 2w4 + w5 + w6)}
]

.

Again, since v1 is zero and ∂2fk

∂xi∂β1
= 0 for k =

3, 4, . . . , 7, then from (9) we have

b = v2

[

w3
∂2f2

∂x3∂β1
+ w4

∂2f2

∂x4∂β1

]

= v2(w3 + νw4) > 0.

Since w1 < 0, so a < 0. Hence, for the system (1), a < 0
and b > 0. Thus the system exhibit forward bifurcation
at β1 = β∗

1 , and an endemic equilibrium appears which
is locally asymptotically stable.

We numerically verify the existence of forward bifur-
cation with respect to the basic reproduction number
R0. Since R0 is not a model parameter and it depends
on β1, so we vary β1. When R0 crosses the threshold
value 1, the system transits from the stable DFE to
the stable endemic equilibrium and the DFE becomes
unstable (Fig. 2). In the figure, the blue-coloured line
depicts the stable DFE and the red curve depicts the
stable endemic equilibrium.

We also draw the time series plot by choosing two dif-
ferent values of β1. For β1 = 0.15, R0 < 1 and all the
infected compartments (un-notified, notified and hos-
pitalized) becomes zero and for β1 = 0.3, R0 > 1 and
infected compartments persists in a stable manner as
time evolves (Fig. 3).
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Fig. 2 Forward bifurcation of the system (1) with respect
to the basic reproduction number R0. The parameter val-
ues are taken as Π = 496.68615, β2 = 6.6248 × 10−8,
ηu = 0.0223, ηn = 0.7846, σh = 0.9181, δh = 0.0046,
αu = 1.3232 × 10−6, αn = 0.0741 and the other parame-
ter values are same as Table 1

4 Model calibration

Daily new deaths between the period 16 January 2021
(start date of vaccination in India) to 31 October 2021
for the districts Bangalore Urban and Chennai are used
to calibrate the model. The rationale behind using
mortality data is that this data is more reliable than
the incidence data due to limited testing capacities
[20,30]. We fit the model output (

∫ T

t=1
[δnIn + δhIh]dt,

where T=289) to daily new deaths and cumulative
deaths due to COVID-19 for both districts. Fixed
parameters and initial conditions of the model (1) are
given in Tables 1 and 2, respectively. Eight unknown
model parameters are estimated, namely β1, β2, νu,
νh, σh, δh, αu and αn. In addition, the initial num-
ber of exposed people E(0) is also estimated from
the mortality data. During the specified time period,
nonlinear least square solver lsqnonlin (in MATLAB)
is used to fit simulated daily mortality data to the
reported COVID-19 deaths in Bangalore urban and
Chennai districts. MATLAB codes for generating the
fitting figures for Chennai have been uploaded to
the GitHub repository https://github.com/indrajitg-r/
ODE_model_fitting. The fitting of the daily new deaths
and cumulative deaths due to COVID-19 are displayed
in Figs. 4 and 5 for Bangalore urban and Chennai,
respectively.

From Fig. 4, it can be argued that the model out-
put fits the mortality data well. Estimated parameter
values for Bangalore urban are as follows: β1 = 0.2277,
β2 = 4.5394 × 10−6, ηu = 0.0104, ηn = 0.3908, σh =
0.7564, δh = 0.0028, αu = 0.0055, αn = 4.8891 × 10−6

and E(0) = 121. The data trend is well captured by
the model output as seen in Fig. 5. Estimated param-
eter values for Chennai district data are as follows:
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Fig. 3 Time series evaluation of infected compartments for the system (1). In A–C, β1 = 0.15 where R0 < 1, and for
D–F, β1 = 0.3 where R0 > 1. The other parameter values are same as Fig. 2

Table 2 Initial conditions used to simulate the model (1) in Bangalore urban and Chennai

IC’s Description Values for Bangalore
urban

Values for Chennai References

Ninit Total population 12,765,000 11,235,000 [25,26]
S(0) Initial number of susceptible 0.7 × Ninit 0.7 × Ninit –
E(0) Initial number of exposed peo-

ple
(1–15,000) (1–15,000) To be estimated

Iu(0) Initial number of un-notified
patients

500 500 –

In(0) Initial number of notified
patients

282 165 [7]

Ih(0) Initial number of hospitalized
patients

10 10 –

R(0) Initial number of recovered
patients

1000 1000 –

V (0) Initial concentration of virus 10−7 10−7 –

β1 = 0.1962, β2 = 6.4749 × 10−6, ηu = 2.4095 × 10−7,
ηn = 0.9997, σh = 0.8244, δh = 0.0019, αu = 0.0011,
αn = 0.0538 and E(0) = 718. Using these estimated
parameters for both the districts, we investigate differ-
ent control strategies.

5 Control interventions and immigration of
infectives

In this section, we investigate different control mech-
anisms and immigration of infectives through numeri-
cal simulation. We examine the effects of vaccination,

treatment by drugs, and use of face masks with different
degrees of efficacy.

5.1 Use of face mask

Although several vaccines are discovered and people are
vaccinated in a rapid process, several drugs are in the
trial stage and few of them are implemented for hos-
pitalized patients, nevertheless, the use of face mask
still could offer as a non-pharmaceutical intervention,
to avoid transmission of direct contact and airborne
transmission of free virus. In a densely populated coun-
try like India, it is almost impossible to determine how
many people have come in contact with an infected per-
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Fig. 4 Fitting model solution to A new deaths and B cumulative death data due to COVID-19 in Bangalore urban district
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Fig. 5 Fitting model solution to A new deaths and B cumulative deaths data due to COVID-19 in Chennai district

son. Thus, wearing a face mask properly is an impor-
tant control strategy for the current epidemic outbreak.
The idea of using a face mask to combat respiratory
infections in the community was not new [44]. Face
masks reduce the amount of droplet inoculum discharg-
ing from infectious individuals by capturing a propor-
tion of droplets within the mask [40,44]. Face masks
also reduce the amount of droplet inoculum inhaled
by susceptible individuals by capturing a proportion
of droplets in the inhaled air and hence reducing the
airborne transmission rate. Let 0 ≤ cm ≤ 1 is the
community-wide compliance in the face mask usage and
0 < εm ≤ 1 is the face mask efficiency for preventing
the disease. Then the term 1 − cmεm describes a mea-
sure of reduction in community contacts and free virus
contacts due to the use of face mask [30,40]. Note that,
0 ≤ 1 − cmεm ≤ 1. We consider three different effi-
ciency levels, depending on the material and layering of
the face masks viz. N95 masks are 95% effective; Sur-
gical masks are 55% effective and Multi-layered cloth
masks are 38% effective [37]. Community-wide compli-

ance in the face mask usage is chosen at three different
levels namely, High 75%, Medium 50%, and low 25%.
The baseline values for cm and εm are taken to be 10%
and 0.1, respectively.

5.2 Treatment by drugs: faster recovery

In recent times, several drugs are developed for mod-
erate to severe COVID-19 patients and some of them
are in a different phase of the trial period. The 3rd
phase trial of Soin et al. [39] in India predict that
tocilizumab plus standard care in patients admitted
to hospital with moderate to severe COVID-19 have a
faster recovery and reduce the burden of intensive care.
Recently, Institute of Nuclear Medicine and Allied Sci-
ences (DRDO-INMAS) and Dr. Reddy’s laboratories,
Hyderabad jointly developed a drug, 2-deoxy-d-glucose
(2-DG) for emergency use in symptomatic COVID-19
patients [3,33]. On 8th May 2021, the Drugs Controller
General of India (DCGI) approved this drug [31]. As per
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the government release, clinical trial data shows that
the drug helps in the recovery timelines of hospitalized
patients and reduces supplemental oxygen dependence.
Latterly, pfizer’s novel COVID-19 oral antiviral treat-
ment candidate PAXLOVIDTM (PF-07321332; riton-
avir) is showing significant reduction in deaths or hos-
pitalization in high risk groups. Consider εt ≥ 1 be
the factor describing the faster recovery of hospitalized
patients. Taking the base value of the εt as 1, we vary
this parameter up to 1.3 while evaluating control strate-
gies.

5.3 Effect of vaccination

To control the ongoing global pandemic, vaccine is
a critical tool as a pharmaceutical intervention. At
present, Covaxin and Covishield vaccines are being used
for the vaccination drive against COVID-19 in India
and also, several vaccines are in trial process [38]. To
extend our mathematical model under the effect of vac-
cination, we introduced a new compartment of popu-
lation, namely protected (P (t)), those who are vacci-
nated. Now, the Susceptible and recovered populations
both can progress to the protected population at rates
ξs and ξr, respectively, through vaccination. For sim-
plicity, we consider that the protected population com-
pleted the required doses of vaccine (and also completed
14 days after the last dose) and thus does not consider
any intermediate stage (i.e., the time gap between doses
or before 14 days of the last dose). The base values for
vaccination rates are chosen to be 0.00085 for both sus-
ceptibles and recovered people. This value is calculated
from the vaccination data of India [7]. Simulations are
performed by increasing the vaccination rates to 0.05
for both sub-populations.

5.4 Immigration of infectives

Communicable diseases like the current COVID-19 epi-
demic may be introduced into a community by the
arrival of infectives outside the community. Indeed, in
India, the first COVID-19 case was reported in Trissur,
Kerala, on January 30, 2020, who was returned from
Wuhan, China [2]. Thus, the immigration of infectives
in a disease-free community played a crucial role for
the spread of the disease. We extend the mathematical
model (1) by assuming a constant flow of new members
of an un-notified person. Recruitment of notified person
was not considered as they are restricted for travelling.
On the other hand, immigration is necessary for many
people to maintain a livelihood. Thus, individuals from
neighbouring locations must be allowed to immigrate
for the well-being of the overall community. Let Λ be
the recruitment rate of un-notified infected individuals
through immigration. We consider three levels of immi-
gration as low, medium, and high with Λ = 1, 5, and
10 respectively.

By considering the above control interventions and
immigration of infectives, the model (1) can be extended
to the following model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= Π − β1(1 − cmεm)S(Iu + νIn)

N
− β2(1 − cmεm)SV

−(μ + ξs)S + θR,

dE

dt
=

β1(1−cmεm)S(Iu+νIn)

N
+β2(1−cmεm)SV −(γ+μ)E,

dIu

dt
= Λ + (1 − p)γE − (ηu + σu + μ)Iu,

dIn

dt
= pγE − (ηn + σn + μ + δn)In,

dIh

dt
= ηuIu + ηnIn − (εtσh + μ + δh)Ih,

dR

dt
= σuIu + σnIn + εtσhIh − (θ + μ + ξr)R,

dP

dt
= ξsS + ξrR − μP,

dV

dt
= αuIu + αnIn − μcV.

(10)

Intensive numerical simulations are performed to
quantify the effects of various strategies in the Banga-
lore urban and Chennai districts. The fixed parameters
and initial conditions are taken from Tables 1 and 2,
respectively. The initial number of protected/vaccinated
people is estimated using vaccination coverage data
from both the districts [7]. Estimated parameters for
both districts are mentioned in the model calibration
section. Using these parameters and control parame-
ters at various levels we simulate the model (10) with
3 months ahead of projections.

For both the districts, the projection period is 1
November 2021 to 31 January 2022. To quantify the
effects of single control strategies more precisely, we
calculate the percentage reduction of notified and hos-
pitalized persons in the 3 month projection period. We
use the following basic formula

Percentage reduction

=
Baseline cases − Cases with control

Baseline cases
× 100. (11)

The percentage reduction in notified and hospital-
ized cases are reported in Table 3 for Bangalore urban
and Chennai districts. We can see that the face mask-
related controls when applied individually have a mod-
erate impact on the notified and hospitalized popula-
tions of both locations. On the other hand, treatment
of hospitalized population has a large positive impact
on the percentage reduction of hospitalized patients.
However, treatment does not show any impact on the
notified patients for both the locations. This might
be due to the fact that the hospitalized patients are
not responsible for new infections directly. Compar-
ing the vaccination rates of susceptible and recovered
people, it can be inferred from the table that vacci-
nating susceptibles has a better impact than that of
recovered people. At least in the short-term (3 months)
scenario, it is beneficial to vaccinate susceptible peo-
ple than to vaccinate recovered people. Furthermore,
while evaluating the effects of immigration, we noticed
that a high level of immigration has a significant neg-
ative impact on the percentage reduction. Thus, the
immigration of un-notified COVID-19 patients has to
be as low as possible. This can be done by allowing peo-
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Table 3 Percentage reduction in the total number of notified and hospitalized COVID-19 patients for different levels of
interventions

Parameter values Bangalore urban Chennai

Reduction in In Reduction in Ih Reduction in In Reduction in Ih

εm = 0.38 7.47 6.98 7.49 7.19
= 0.55 11.63 10.87 11.65 11.18
= 0.95 20.42 19.11 20.42 19.61

cm = 0.25 4.10 3.83 4.12 3.95
= 0.50 10.43 9.75 10.45 10.03
= 0.75 16.19 15.14 16.20 15.55

εt = 1.10 − 0.00 8.89 − 0.00 8.90
= 1.20 − 0.00 16.30 − 0.00 16.31
= 1.30 − 0.00 22.58 − 0.00 22.59

ξs = 0.005 20.86 19.31 19.87 18.98
= 0.01 33.82 31.53 32.22 30.90
= 0.05 60.44 56.96 58.85 56.71

ξr = 0.01 1.46 1.32 1.00 0.94
= 0.03 2.92 2.65 2.00 1.89
= 0.05 8.85 8.10 6.22 5.90

Λ = 1 − 1.42 − 1.44 − 0.71 − 0.68
= 5 − 7.10 − 7.19 − 3.57 − 3.39
= 10 − 14.19 − 14.39 − 7.14 − 6.78

ple from low incidence neighbour districts and restrict-
ing immigration from highly affected areas. From the
single control results, it is evident that pharmaceuti-
cal mitigation strategies like treatment of hospitalized
patients and vaccination of susceptible individuals are
most effective. Additionally, non-pharmaceutical mea-
sures such as face mask use have minimal effects on
the reduction of notified and hospitalized COVID-19
cases.

To investigate the combined effects of control inter-
ventions, we examine four different combinations on
the total number of hospitalized patients (Itot

h ) in the
3-month projection period. The parameter values are
taken as mentioned earlier in this section. We draw con-
tour plots with respect to the control parameters with
response variable Itot

h =
∫ 381

t=289
Ih(t)dt. Contour plots

depicting combination of interventions are displayed in
Figs. 6 and 7 for Bangalore urban and Chennai districts,
respectively.

For both of the locations, similar scenarios are seen
with varying control interventions and immigration of
un-notified infectious patients. Simultaneously increas-
ing face mask efficacy and population-wide compli-
ance level will decrease Itot

h in the 3 month projection
period (Figs. 6A, 7A). Thus, both the face mask-related
parameters will have a stronger impact on the reduction
of Itot

h . On the other hand, the vaccination rate of sus-
ceptibles and increase in the treatment rate of hospital-
ized patients will have similar effects for both the loca-
tions (as seen in Figs. 6B, 7B). Further, the immigration
of un-notified COVID-19 patients will obviously show
an increase in Itot

h . But, keeping Λ low and increas-
ing treatment rate simultaneously will keep Itot

h under
control (see Figs. 6C, 7C). From the number of Itot

h , it
should be noted that this combination is risky if there

is no other intervention in action. However, if the vac-
cination of susceptibles is performed at an increased
rate, then the immigration may not have very adverse
effects (see Fig. 6D and 7D). It can be noted that a
high level of face mask use with maximum efficacy is
more effective than the other combined strategies in
terms of reduction in Itot

h . But the feasibility of face
mask usage in such intensity may be critical. From the
contour plot analysis, it can be argued that the combi-
nation of ξs and εt is more feasible and has competitive
effects on Itot

h . Further numerical simulations are neces-
sary to study the combination of more than two control
interventions and the immigration of un-notified infec-
tives.

Three or more control interventions and the immi-
gration of infectives are now applied to examine their
combined impact on the COVID-19 cases in the 3
months projection period. We calculate the percentage
reduction in notified COVID-19 patients and hospital-
ized COVID-19 patients using the formula (11). The
fixed parameters and initial conditions are taken from
Tables 1 and 2 . Four different combination strategies
are investigated namely, strategy I: face mask efficacy-
community level usage of face masks-vaccination of sus-
ceptibles (εm–cm–ξs), strategy II: face mask efficacy-
community level usage of face masks-vaccination of
susceptibles-increase in treatment rate (εm–cm–ξs–εt),
strategy III: face mask efficacy-community level usage
of face masks-vaccination of susceptibles-increase in
treatment rate-immigration of un-notified infectives
(εm–cm–ξs-εt–Λ) and strategy IV: combination of all
control interventions with immigration of un-notified
infectives (εm–cm–ξs–εt–Λ-ξr). The parameter values
are chosen for the feasibility of the strategies, i.e., we do
not consider hypothetically high values of the parame-
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Fig. 6 Combination of control strategies and immigra-
tion of infectives in Bangalore urban. A efficacy of face
mask usage—community-wide compliance in face mask
usage (εm − cm), B increase in recovery rate of hospi-
talized patients—vaccination rate of susceptible individu-

als (εt − ξs), C increase in recovery rate of hospitalized
patients—immigration of infectives (εt − Λ), D vaccination
rate of susceptible individuals—immigration of infectives
(εs − Λ)

ters. The percentage reduction of In and Ih for Banga-
lore urban and Chennai are reported in Table 4.

From the combinations of strategy I and strategy II,
we observe that the second case of strategy II has most
the positive reduction for both the districts. However,
the travel restrictions are being eased and more peo-
ple tend to come to these districts. Thus, the immigra-
tion of un-notified infectives is also evident and hence
it is necessary to consider non-zero values of Λ. It can
be observed that strategy IV (first case) with specified
control parameter values and low immigration has the
most feasible results on both the locations (marked bold
in Table 4). Alternatively, the second case of strategy
II shows a similar case reduction in both the locations.
This strategy does not include immigration and there-
fore is not feasible. It can be seen that the second case
of strategy III also shows competitive results in terms

of percentage reduction of both populations. This strat-
egy is feasible and can be implemented with less effort
by the policy makers.

6 Results and conclusions

An SEIR-type compartmental model for the transmis-
sion dynamics of COVID-19 outbreak incorporating
free virus concentration of the environment is con-
sidered in this paper. The model assumes standard
incidence function while COVID-19 transmission by
un-notified and notified individuals. Mass action inci-
dence is considered for the airborne transmission of
the virus. The mathematical model consists of a seven-
dimensional system of ordinary differential equations.
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Fig. 7 Combination of control strategies and immigra-
tion of infectives in Chennai. A efficacy of face mask
usage—community-wide compliance in face mask usage
(εm − cm), B increase in recovery rate of hospitalized

patients—vaccination rate of susceptible individuals (εt −
ξs), C increase in recovery rate of hospitalized patients—
immigration of infectives (εt − Λ), D vaccination rate of
susceptible individuals—immigration of infectives (εs − Λ)

The model is mathematically analysed to obtain insight
into the long-term dynamic features of the disease.
Basic properties of the model are studied by finding
positivity and boundedness of the solutions when the
initial conditions are taken non-negative for all the state
variables. The disease-free equilibrium (DFE) of the
model is found to be unique and the basic reproduc-
tion number is found using the next-generation matrix
method. The model has a locally stable DFE when-
ever the basic reproduction number is less than unity
otherwise the DFE becomes unstable. Moreover, the
global stability of the DFE is guaranteed when R0 < 1.
This can be inferred that COVID-19 will be mitigated
from the community if the corresponding parameters
are in the range to ensure R0 < 1. The existence of
the endemic equilibrium is investigated and it is found
that at most two endemic equilibria may exist for the
system. Forward transcritical bifurcation is established

both analytically and numerically between DFE and
one of the endemic equilibrium (see Fig. 2). Further,
it is numerically shown that all the infected compart-
ments tend to vanish in the long run when R0 < 1
and approaches a non-zero equilibrium when R0 > 1
(shown in Fig. 3).

We calibrated the proposed model parameters to fit
daily mortality data of two districts of India during
the period of January 16th, 2021 to October 31st, 2021.
From the fitting of the model output to mortality data,
it can be seen that the model output closely antici-
pates the real data for both the districts. Afterwards
we investigate the impacts of control strategies and
immigration of un-notified persons on the number of
hospitalized patients. We concentrate on both phar-
maceutical and non-pharmaceutical control measures
as they are being implemented simultaneously to com-
bat the deadly disease. Two pharmaceutical measures
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Table 4 Percentage reduction in total number of notified and hospitalized COVID-19 patients for different strategies

Parameter values Bangalore urban Chennai

Reduction in In Reduction in Ih Reduction in In Reduction in Ih

Strategy-I εm = 0.38, cm = 0.25, ξs =
0.005

33.67 31.47 32.85 31.54

εm = 0.38, cm = 0.50, ξs =
0.005

44.77 42.02 44.09 42.42

εm = 0.55, cm = 0.25, ξs =
0.005

39.00 36.53 38.25 36.76

Strategy-II εm = 0.38, cm = 0.25, ξs =
0.005, εt = 1.1

33.67 37.54 32.85 37.60

εm = 0.38, cm = 0.50, ξs =
0.005, εt = 1.1

44.77 47.14 44.09 47.49

εm = 0.55, cm = 0.25, ξs =
0.005, εt = 1.1

39.00 42.15 38.25 42.35

Strategy-III εm = 0.38, cm = 0.25, ξs =
0.005, εt = 1.1, Λ = 5

29.78 33.63 30.91 35.91

εm = 0.38, cm = 0.50, ξs =
0.005, εt = 1.1, Λ = 5

41.62 43.86 42.52 46.12

εm = 0.55, cm = 0.25, ξs =
0.005, εt = 1.1, Λ = 5

35.46 38.53 36.48 40.81

εm = 0.38, cm = 0.25, ξs =
0.005, εt = 1.1, Λ = 10

25.89 29.72 28.97 34.22

εm = 0.38, cm = 0.50, ξs =
0.005, εt = 1.1, Λ = 10

38.47 40.57 40.94 44.75

εm = 0.55, cm = 0.25, ξs =
0.005, εt = 1.1, Λ = 10

31.91 34.91 34.71 39.27

Strategy-IV εm = 0.38, cm = 0.50, ξs =
0.005, ξr = 0.01, εt = 1.1, Λ
= 5

42.31 44.44 42.92 46.48

εm = 0.38, cm = 0.50, ξs =
0.005, ξr = 0.01, εt = 1.1, Λ
= 10

39.30 41.27 41.40 45.15

The most feasible strategies for both the locations are marked in bold

namely, treatment of hospitalized persons and vacci-
nation of susceptibles as well as recovered persons are
considered. On the other hand, face mask efficacy and
community-wide compliance of face masks are consid-
ered as non-pharmaceutical control measures. Along
with these interventions, we also study the effect of
immigrating un-notified persons from other communi-
ties. We calculated the percentage reduction in total
hospitalized patients to get a quantitative idea of the
control measures and immigration. It is found that
treatment of hospitalized patients and vaccination of
susceptible impacts has a significant impact on the
reduction of hospitalized cases (see Table 3). Therefore,
pharmaceutical measures are more reliable than non-
pharmaceutical controls. Additionally, immigration of
un-notified infected persons may drive the hospitalized
cases to higher prevalence. It is noted that face mask-
related controls have a lower impact than pharmaceuti-
cal measures like treatment and vaccination. The immi-
gration of un-notified patients has a negative impact on
the total hospitalized cases and thus this should be kept

as low as possible. Low immigration of infectives can
be maintained by restricting immigration from highly
affected neighbouring districts. Further, we investigate
the combined effect of two strategies on the total num-
ber of hospitalized patients for both districts. We found
that the combination of treatment and vaccination of
susceptible individuals will be very effective to reduce
the disease. Finally, we compare three or more interven-
tions by calculating the percentage reduction of notified
and hospitalized patients with different levels of feasi-
ble control measures and immigration rates. We exam-
ine strategy I–strategy IV (as defined in the previous
section) and find that the combination of all controls
with low immigration will have the best effect on the
reduction of the disease. However, the second case of
strategy III also shows competitive results in terms of
percentage reduction of both populations. This strategy
differs from strategy IV by the vaccination of recovered
people. Therefore, it can be concluded that when vac-
cine crisis is there, the public health authorities may not
vaccinate the recovered people. In other words, the peo-
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ple who were tested COVID-19 positive in past and are
now healthy (they may have developed natural antibod-
ies against SARS-CoV-2) may be vaccinated later when
vaccines are available. Low immigration of un-notified
patients can be regulated by restricting the movement
of people from high prevalence adjacent districts. This
analysis can be made with data from other profoundly
affected districts with proper parametrization.

In summary, the results indicate that vaccination
of susceptible individuals and treatment of hospital-
ized patients are very crucial to control COVID-19 in
the two locations. In the 3 months short-term period,
vaccination of susceptible people should be prioritized
over vaccination of recovered people for a better out-
come. Whenever vaccine crisis is there, governments
may avoid the vaccination of people who were tested
COVID-19 positive and are now healthy. However,
increased quality and quantity of mask use are also
helpful. Along with face mask use, treatment of hospi-
talized patients, and vaccination of susceptibles, immi-
gration should be allowed in a supervised manner so
that economy of the overall society remains healthy.
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