Skip to main content
Log in

Nonlinear optical techniques for characterization of organic electronic and photonic devices

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The turn of this century has undoubtedly brought in tremendous interest in the development of organic electronic and photonic devices. As an aid of understanding the physics behind the device mechanism, various experimental tools are innovated and applied. Herein, various nonlinear optical techniques that are employed towards characterization of these organic material-based devices are reviewed. We describe experimental techniques based on second-harmonic generation (SHG) and sum-frequency generation (SFG) and review some potential applications that basically probe the electric field distribution in the bulk and at interfaces of the electronic and photonic devices. SFG carries information about vibrational spectrum of molecules at the surface, and further analysis of that provides in-depth understanding about their chemical structure and interactions, whereas SHG is sensitive to the electronic spectrum of the interfacial molecules. Thus, a comprehensive study using both of these techniques allows a more complete interfacial characterization of organic devices. Most applications use electric-field-induced SFG (or SHG) to examine the electric field orientation and spatial distribution. Further, time-resolved techniques, such as transient SFG or SHG microscopy, allow direct investigation of the charge carrier motion inside the organic layers under device operation, by probing the change of transient electric field. At the end, we briefly discuss possible directions for further research with these techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Copyright 2012, AIP Publishing

Fig. 3
Fig. 4

Reproduced with permission [43]. Copyright 2015, AIP Publishing

Fig. 5

Reproduced with permission [47]. Copyright 2017, AIP Publishing

Fig. 6

Reproduced with permission [50]. Copyright 2019, Elsevier

Fig. 7

Reproduced with permission [60]. Copyright 2019, Elsevier

Fig. 8

Reproduced with permission [61]. Copyright 2020, Elsevier

Fig. 9

Reproduced with permission [65]. Copyright 2005, AIP Publishing

Fig. 10

Reproduced with permission [72]. Copyright 2018, American Chemical Society

Similar content being viewed by others

References

  1. L. Zhou et al., All-organic active matrix flexible display. Appl. Phys. Lett. 88(8), 083502 (2006)

    Article  ADS  Google Scholar 

  2. A. Lodha, R. Singh, Prospects of manufacturing organic semiconductor-based integrated circuits. IEEE Trans. Semicond. Manuf. 14(3), 281–296 (2001)

    Article  Google Scholar 

  3. M. Nonnenmacher, M. o’Boyle, H.K. Wickramasinghe, Kelvin probe force microscopy. Appl. Phys. Lett. 58(25), 2921–2923 (1991)

    Article  ADS  Google Scholar 

  4. O. Vatel, M. Tanimoto, Kelvin probe force microscopy for potential distribution measurement of semiconductor devices. J. Appl. Phys. 77(6), 2358–2362 (1995)

    Article  ADS  Google Scholar 

  5. L. Bürgi, H. Sirringhaus, R. Friend, Noncontact potentiometry of polymer field-effect transistors. Appl. Phys. Lett. 80(16), 2913–2915 (2002)

    Article  ADS  Google Scholar 

  6. T. Manaka, S. Kawashima, M. Iwamoto, Charge modulated reflectance topography for probing in-plane carrier distribution in pentacene field-effect transistors. Appl. Phys. Lett. 97(11), 200 (2010)

    Article  Google Scholar 

  7. X.Y. Chin et al., Ambipolar charge distribution in donor-acceptor polymer field-effect transistors. J. Mater. Chem. C 5(3), 754–762 (2017)

    Article  Google Scholar 

  8. O. Khatib et al., Electron and hole polaron accumulation in low-bandgap ambipolar donor-acceptor polymer transistors imaged by infrared microscopy. Phys. Rev. B 90(23), 235307 (2014)

    Article  ADS  Google Scholar 

  9. R.J. Kline, M.D. McGehee, M.F. Toney, Nat. Mater. 5, 222 (2006) (CrossRef| CAS| Web of Science\(^{\text{\textregistered} }\) Times Cited. 140)

  10. S. Braun, W.R. Salaneck, M. Fahlman, Energy-level alignment at organic/metal and organic/organic interfaces. Adv. Mater. 21(14–15), 1450–1472 (2009)

    Article  Google Scholar 

  11. Y. Furukawa et al., Infrared and Raman spectroscopy of organic thin films used for electronic devices. Vib. Spectrosc. 60, 5–9 (2012)

    Article  Google Scholar 

  12. V. Parente et al., The vibrational signature of the aluminum/polythiophene interface. Adv. Mater. 10(4), 319–324 (1998)

    Article  ADS  Google Scholar 

  13. Y. Furukawa, et al. Voltage-induced infrared spectra from polymer field-effect transistors, in Macromolecular Symposia (Wiley Online Library, 2004)

  14. T. Manaka et al., Direct imaging of carrier motion in organic transistors by optical second-harmonic generation. Nat. Photonics 1(10), 581–584 (2007)

    Article  ADS  Google Scholar 

  15. D. Yamada et al., Injected carrier distribution in a pentacene field effect transistor probed using optical second harmonic generation. J. Appl. Phys. 104(7), 074502 (2008)

    Article  ADS  Google Scholar 

  16. P.E. Powers, J.W. Haus, Fundamentals of Nonlinear Optics (CRC Press, Boca Raton, 2017)

    MATH  Google Scholar 

  17. R.W. Boyd, Nonlinear Optics (Academic Press, Singapore, 2020)

    Google Scholar 

  18. G. New, Introduction to Nonlinear Optics (Cambridge University Press, Cambridge, 2011)

    Book  MATH  Google Scholar 

  19. C. Li, Nonlinear Optics: Principles and Applications (Springer, Berlin, 2016)

    Google Scholar 

  20. C. Guo, Handbook of Laser Technology and Applications: Lasers Applications: Materials Processing and Spectroscopy (Volume Three), vol. 3 (CRC Press, Boca Raton, 2021)

    Google Scholar 

  21. F. Zernike, J.E. Midwinter, Applied Nonlinear Optics (Courier Corporation, Chelmsford, 2006)

    Google Scholar 

  22. T. Manaka, M. Iwamoto, Optical second-harmonic generation measurement for probing organic device operation. Light Sci. Appl. 5(3), e16040–e16040 (2016)

    Article  ADS  Google Scholar 

  23. B. Levine, C.G. Bethea, Second and third order hyperpolarizabilities of organic molecules. J. Chem. Phys. 63(6), 2666–2682 (1975)

    Article  ADS  Google Scholar 

  24. C. Bosshard et al., Second-order polarizabilities of nitropyridine derivatives determined with electric-field-induced second-harmonic generation and a solvatochromic method: A comparative study. J. Appl. Phys. 71(4), 1594–1605 (1992)

    Article  ADS  Google Scholar 

  25. A. Sadakata et al., Probing interfacial charge accumulation in ITO/\(\alpha \)-NPD/Alq3/Al diodes under two electroluminescence operational modes by electric-field induced optical second-harmonic generation. J. Appl. Phys. 112(8), 083723 (2012)

    Article  ADS  Google Scholar 

  26. S.G. Motti, F.C. Maia, P.B. Miranda. Nonlinear spectroscopy of interfaces and its application to organic electronics, in Ultrafast Dynamics in Molecules, Nanostructures and Interfaces: Selected Lectures Presented at Symposium on Ultrafast Dynamics of the 7th International Conference on Materials for Advanced Technologies (World Scientific, 2013)

  27. H. Ye et al., Probing organic field effect transistors in situ during operation using SFG. J. Am. Chem. Soc. 128(20), 6528–6529 (2006)

    Article  Google Scholar 

  28. H. Ye et al., Correlations between SFG spectra and electrical properties of organic field effect transistors. J. Phys. Chem. C 111(35), 13250–13255 (2007)

    Article  Google Scholar 

  29. H. Ye, Z. Gu, D.H. Gracias, Kinetics of ultraviolet and plasma surface modification of poly (dimethylsiloxane) probed by sum frequency vibrational spectroscopy. Langmuir 22(4), 1863–1868 (2006)

    Article  Google Scholar 

  30. T. Miyamae et al., Characterization of the interactions between Alq3 thin films and Al probed by two-color sum-frequency generation spectroscopy. J. Phys. Chem. C 115(19), 9551–9560 (2011)

    Article  Google Scholar 

  31. J.Y. Huang, Y. Shen, Theory of doubly resonant infrared-visible sum-frequency and difference-frequency generation from adsorbed molecules. Phys. Rev. A 49(5), 3973 (1994)

    Article  ADS  Google Scholar 

  32. T. Miyamae et al., Direct probing of charge carrier behavior in multilayered organic light-emitting diode devices by time-resolved electric-field-induced sum-frequency generation spectroscopy. Appl. Phys. Express 10(10), 102101 (2017)

    Article  ADS  Google Scholar 

  33. C. Rulliere, Femtosecond Laser Pulses (Springer, Berlin, 2005)

    Book  Google Scholar 

  34. G. Lanzani, The Photophysics Behind Photovoltaics and Photonics (Wiley, New York, 2012)

    Book  Google Scholar 

  35. A.W. Adamson, A.P. Gast, Physical Chemistry of Surfaces, vol. 15 (Interscience publishers, New York, 1967)

    Google Scholar 

  36. Y.-R. Shen, The Principles of Nonlinear Optics. (New York, 1984)

  37. D. Taguchi et al., Probing of carrier behavior in organic electroluminescent diode using electric field induced optical second-harmonic generation measurement. Appl. Phys. Lett. 95(26), 342 (2009)

    Article  Google Scholar 

  38. E. Lim, T. Manaka, M. Iwamoto, Probing electric field in double-layer electroluminescence diode by optical second harmonic generation. Chem. Phys. Lett. 516(4–6), 254–256 (2011)

    Article  ADS  Google Scholar 

  39. E. Lim, D. Taguchi, M. Iwamoto, Probing charging effects induced in ITO/polyimide/6,13-Bis(triisopropylsilylethynyl)-pentacene/Au diodes by time-resolved optical second harmonic generation measurement. Chem. Phys. Lett. 515(4–6), 306–309 (2011)

    Article  ADS  Google Scholar 

  40. E. Lim, D. Taguchi, M. Iwamoto, Probing electric field distribution change in ITO/PI/TIPS-pentacene/Au diodes by time-resolved optical second harmonic generation measurement. Chem. Phys. Lett. 561, 97–100 (2013)

    Article  ADS  Google Scholar 

  41. D. Taguchi et al., Analysis of organic light-emitting diode as a Maxwell–Wagner effect element by time-resolved optical second harmonic generation measurement. J. Phys. Chem. Lett. 1(5), 803–807 (2010)

    Article  Google Scholar 

  42. D. Taguchi et al., Analyzing hysteresis behavior of capacitance-voltage characteristics of IZO/C60/pentacene/Au diodes with a hole-transport electron-blocking polyterpenol layer by electric-field-induced optical second-harmonic generation measurement. Chem. Phys. Lett. 572, 150–153 (2013)

    Article  ADS  Google Scholar 

  43. S. Nishi et al., Analysis of current-voltage characteristics of Au/pentacene/fluorine polymer/indium zinc oxide diodes by electric-field-induced optical second-harmonic generation. J. Appl. Phys. 117(24), 245502 (2015)

    Article  ADS  Google Scholar 

  44. X. Chen et al., Selective observation of photo-induced electric fields inside different material components in bulk-heterojunction organic solar cell. Appl. Phys. Lett. 104(1), 013306 (2014)

    Article  ADS  Google Scholar 

  45. Y. Oda et al., Influence of pentacene interface layer in ITO/-NPD/Alq3/Al organic light emitting diodes by time-resolved electric-field-induced optical second-harmonic generation measurement. J. Nanosci. Nanotechnol. 16(4), 3188–3193 (2016)

    Article  Google Scholar 

  46. Y. Noguchi et al., Threshold voltage shift and formation of charge traps induced by light irradiation during the fabrication of organic light-emitting diodes. Appl. Phys. Lett. 92(20), 187 (2008)

    Article  Google Scholar 

  47. T. Otsuka et al., Study of carrier energetics in ITO/P (VDF-TrFE)/pentacene/Au diode by using electric-field-induced optical second harmonic generation measurement and charge modulation spectroscopy. J. Appl. Phys. 121(6), 065501 (2017)

    Article  ADS  Google Scholar 

  48. J. Li et al., Interaction of interfacial charge and ferroelectric polarization in a pentacene/poly (vinylidene fluoride-trifluoroethylene) double-layer device. Appl. Phys. Lett. 99(6), 160 (2011)

    Google Scholar 

  49. T. Miyamae, N. Takada, T. Tsutsui, Probing buried organic layers in organic light-emitting diodes under operation by electric-field-induced doubly resonant sum-frequency generation spectroscopy. Appl. Phys. Lett. 101(7), 073304 (2012)

    Article  ADS  Google Scholar 

  50. T. Sato et al., Direct observations of the charge behavior of a high-efficiency blue organic light-emitting diode under operating conditions using electric-field-induced doubly resonant sum-frequency-generation vibrational spectroscopy. Org. Electron. 74, 118–125 (2019)

    Article  Google Scholar 

  51. X. Chen et al., Analyzing interfacial carrier charging in pentacene/C60 double-layer organic solar cells by optical electric field induced second-harmonic generation measurement. Chem. Phys. Lett. 511(4), 491–495 (2011)

    Article  ADS  Google Scholar 

  52. D. Taguchi et al., Direct probing of photovoltaic effect generated in double-layer organic solar cell by electric-field-induced optical second-harmonic generation. Appl. Phys. Express 4(2), 021602 (2011)

    Article  ADS  Google Scholar 

  53. D. Taguchi et al., Analyzing carrier lifetime of double-layer organic solar cells by using optical electric-field-induced second-harmonic generation measurement. Appl. Phys. Lett. 98(13), 133507 (2011)

    Article  ADS  Google Scholar 

  54. X. Chen et al., Analysis of interface carrier accumulation and relaxation in pentacene/C60 double-layer organic solar cell by impedance spectroscopy and electric-field-induced optical second harmonic generation. J. Appl. Phys. 110(7), 074509 (2011)

    Article  ADS  Google Scholar 

  55. J. Morris et al., Mapping electric field distributions in biased organic bulk heterojunctions under illumination by nonlinear optical microscopy. Appl. Phys. Lett. 102(3), 12 (2013)

    Article  Google Scholar 

  56. C. Lombardo et al., Electrical characteristics of lateral organic bulk heterojunction device structures. Org. Electron. 13(7), 1185–1191 (2012)

    Article  Google Scholar 

  57. Z.-E. Ooi et al., Analysis of photocurrents in lateral-geometry organic bulk heterojunction devices. Appl. Phys. Lett. 101(5), 053301 (2012)

    Article  ADS  Google Scholar 

  58. L.G. Kaake et al., Probing ultrafast charge separation at organic donor/acceptor interfaces by a femtosecond electric field meter. Appl. Phys. Lett. 99(8), 179 (2011)

    Article  Google Scholar 

  59. A.E. Jailaubekov et al., Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics. Nat. Mater. 12(1), 66–73 (2013)

    Article  ADS  Google Scholar 

  60. Z. Ahmad et al., Stability in 3D and 2D/3D hybrid perovskite solar cells studied by EFISHG and IS techniques under light and heat soaking. Org. Electron. 66, 7–12 (2019)

    Article  Google Scholar 

  61. Z. Ahmad et al., Detection of voltage pulse width effect on charge accumulation in PSCs using EFISHG measurement. Results Phys. 17, 103063 (2020)

    Article  Google Scholar 

  62. I.M. Alrougy, D. Taguchi, T. Manaka, Effect of 1,8-Diiodooctance additive on the charge carriers behavior in the PCPDTBT:PC 71 BM BHJ films investigated by using electric-field-induced optical second-harmonic generation measurement. J. Mater. Sci. Mater. Electron. 32(3), 2845–2852 (2021)

    Article  Google Scholar 

  63. M. Xiao et al., Effect of interfacial molecular orientation on power conversion efficiency of perovskite solar cells. J. Am. Chem. Soc. 139(9), 3378–3386 (2017)

    Article  Google Scholar 

  64. W. Sung et al., Preferred orientations of organic cations at lead-halide perovskite interfaces revealed using vibrational sum-frequency spectroscopy. Mater. Horiz. 7(5), 1348–1357 (2020)

    Article  Google Scholar 

  65. T. Manaka et al., Modulation in optical second harmonic generation signal from channel of pentacene field effect transistors during device operation. Appl. Phys. Lett. 87(22), 222107 (2005)

    Article  ADS  Google Scholar 

  66. T. Manaka, Y. Suzue, M. Iwamoto, Investigation of the electrostatic phenomena at pentacene/metal interface by second-harmonic generation. Jpn. J. Appl. Phys. 44(4S), 2818 (2005)

    Article  ADS  Google Scholar 

  67. N. Bloembergen, Nonlinear Optics (WA Benjamin, New York, and papers reproduced therein, 1965)

  68. T. Manaka et al., Probing of the electric field distribution in organic field effect transistor channel by microscopic second-harmonic generation. Appl. Phys. Lett. 89(7), 072113 (2006)

    Article  ADS  Google Scholar 

  69. E. Lim et al., Analysis of hysteresis behavior of pentacene field effect transistor characteristics with capacitance-voltage and optical second harmonic generation measurements. J. Appl. Phys. 101(9), 094505 (2007)

    Article  ADS  Google Scholar 

  70. Y. Abe et al., Study of carrier transport in flexible organic field-effect transistors: analysis of bending effect and microscopic observation using electric-field-induced optical second-harmonic generation. Thin Solid Films 554, 166–169 (2014)

    Article  ADS  Google Scholar 

  71. H. Yang, T. Miyamae, M. Miyashita, Mapping accumulated charges at the semiconductor/insulator interface of organic field-effect transistors by sum-frequency generation spectroscopy. E J. Surf. Sci. Nanotechnol. 16, 364–369 (2018)

    Article  Google Scholar 

  72. S.G. Motti et al., Probing device degradation and electric fields in polymeric field-effect transistors by SFG vibrational spectroscopy. J. Phys. Chem. C 122(19), 10450–10458 (2018)

    Article  Google Scholar 

  73. J. Casado et al., Vibrational spectra of charged defects in a series of \(\alpha \), \(\alpha \)’-dimethyl end-capped oligothiophenes induced by chemical doping with iodine. J. Chem. Phys. 109(23), 10419–10429 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

MSA, PBM and SSKR acknowledge the financial support from project no’s BRICS/PilotCall2/IEEE-OSC/2018 (G), whose Brazilian part was funded by CNPq 442239/2017-3. SSKR acknowledges the financial support of DST project CRG/2019/003197.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sai Santosh Kumar Raavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, M.S., Biswas, C., Miranda, P.B. et al. Nonlinear optical techniques for characterization of organic electronic and photonic devices. Eur. Phys. J. Spec. Top. 231, 695–711 (2022). https://doi.org/10.1140/epjs/s11734-021-00391-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00391-8

Navigation