Skip to main content

Advertisement

Log in

Tunable TE/TM mode converter with an orthogonal graphene-based grating structure

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

A novel TM/TE polarization converter constructed with orthogonal double-layer graphene gratings is proposed. The high-performance TM/TE polarization conversion was explored by optimizing the Fermi energy and geometric parameters of the two-layer graphene gratings. As the Fermi level of graphene is dynamically adjustable, tunable polarization modulation can be achieved by the same design. Here we utilize the finite element method and improved coupled-mode theory to simulate and verify the conversion and modulation characteristics of TM and TE polarization. Proof-of-concept experiments demonstrated that this TM/TE converter provided excellent optical efficiency in polarization conversion and strong modulation stability against incident wave angle (up to 30°) and polarization status. This simple and easy-to-implement grating structure paves the way for the development of future micro-nano devices such as unimodal filters, and its functions can be further translated to study absorption and reflection spectra in nanophotonic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V. Mittal, N.P. Sessions, J.S. Wilkinson, G.S. Murugan, Opt. Mater. Express 7, 712–725 (2017)

    Article  ADS  Google Scholar 

  2. J. Wang, L. Sun, Z.D. Hu, X. Liang, C. Liu, AIP Adv. 4, 123006 (2014)

    Article  ADS  Google Scholar 

  3. W. Wang, Z. Zhao, C. Guo, F. Shen, J. Sun, Z. Guo, IEEE Photonics J. 12, 4501108 (2020)

    Google Scholar 

  4. X.Y. Ding, Q.L. Kang, K. Guo, Z.Y. Guo, Opt. Mater. 109, 110284 (2020)

    Article  Google Scholar 

  5. K. Guo, H.S. Xu, Z.Y. Peng, X. Liu, Z.Y. Guo, IEEE Sens. J. 19, 3654–3659 (2019)

    Article  ADS  Google Scholar 

  6. O. Jafari, S. Zhalehpour, W. Shi, S. LaRochelle, Photon. Res. 9, 471 (2021)

    Article  Google Scholar 

  7. Q. Fan, M. Liu, C. Yang, L. Yu, F. Yan, T. Xu, Appl. Phys. Lett. 113, 201104 (2018)

    Article  ADS  Google Scholar 

  8. G. Brunetti, D. Conteduca, F. Dell’Olio, C. Ciminelli, M.N. Armenise, Opt. Express 26, 4593 (2018)

    Article  ADS  Google Scholar 

  9. M.D. Goldflam, Z. Fei, I. Ruiz, S.W. Howell, P.S. Davids, D.W. Peters, T.E. Beechem, Opt. Express 25, 12400 (2017)

    Article  ADS  Google Scholar 

  10. H.P. Zhou, L. Chen, F. Shen, K. Guo, Z.Y. Guo, Phys. Rev. Appl. 11, 024046 (2019)

    Article  ADS  Google Scholar 

  11. J.S. Gómez-Díaz, J. Perruisseau-Carrier, Opt. Express 21, 15490 (2013)

    Article  ADS  Google Scholar 

  12. T. Wang, M. Cao, H. Zhang, Y. Zhang, Appl. Opt. 57, 9555 (2018)

    Article  ADS  Google Scholar 

  13. S. Liu, H.B. Chen, T.J. Cui, Appl. Phys. Lett. 106, 4918289 (2015)

    Google Scholar 

  14. A.V. Zayats, I.I. Smolyaninov, A.A. Maradudin, Phys. Rep. 408, 131–314 (2005)

    Article  ADS  Google Scholar 

  15. M.D. Goldflam, I. Ruiz, S.W. Howell, J.R. Wendt, M.B. Sinclair, D.W. Peters, T.E. Beechem, Opt. Express 26, 8532–8541 (2018)

    Article  ADS  Google Scholar 

  16. C. Sun, Z.W. Dong, J.N. Si, X.X. Deng, Opt. Express 25, 1242–1250 (2017)

    Article  ADS  Google Scholar 

  17. X. Duan, S. Chen, H. Cheng, Z. Li, J. Tian, Opt. Lett. 38, 483–485 (2013)

    Article  ADS  Google Scholar 

  18. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, Nature 474, 64–67 (2011)

    Article  ADS  Google Scholar 

  19. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H.A. Bechtel, X. Liang, A. Zettl, Y.R. Shen, F. Wang, Nat. Nanotechnol. 6, 630–634 (2011)

    Article  ADS  Google Scholar 

  20. F.A. Vallejo, L.M. Hayden, Opt. Express 21, 5842–5858 (2013)

    Article  ADS  Google Scholar 

  21. F.M. Pigozzo, D. Modotto, S. Wabnitz, Opt. Lett. 37, 2244–2246 (2012)

    Article  ADS  Google Scholar 

  22. P. Bienstman, Rigorous and efficient modeling of wavelength scale photonic components (Universiteit Gent, 2001)

    Google Scholar 

  23. J.S. Gómez-Díaz, M. Esquius-Morote, J. Perruisseau-Carrier, Opt. Express 21, 24856–24872 (2013)

    Article  ADS  Google Scholar 

  24. F.H. Koppens, D.E. Chang, F.J.G. de Abajo, Nano Lett. 11, 3370–3377 (2011)

    Article  ADS  Google Scholar 

  25. X. Zhao, L. Zhu, C. Yuan, J. Yao, Opt. Lett. 41, 5470–5473 (2016)

    Article  ADS  Google Scholar 

  26. T.R. Bai, T. Yang, Z.D. Hu, T.L. Xing, Z.Y. Lu, Y.L. Huang, J.C. Wang, IEEE Sens. J. 21, 2791–2797 (2021)

    Article  ADS  Google Scholar 

  27. Y.C. Wang, T.T. Fernandez, N. Coluccelli, A. Gambetta, P. Laporta, G. Galzerano, Opt. Express 25, 25193–25200 (2017)

    Article  ADS  Google Scholar 

  28. S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, V. Gapontsev, Opt. Mat. Express 7, 2636–2650 (2017)

    Article  ADS  Google Scholar 

  29. G.W. Hanson, J. Appl. Phys. 104, 084314 (2008)

    Article  ADS  Google Scholar 

  30. H.J. Li, L.L. Wang, B. Sun, Z.R. Huang, X. Zhai, J. Appl. Phys. 116, 824 (2014)

    Google Scholar 

  31. J.H. Ge, C.L. You, H. Feng, X.M. Li, M. Wang, L.F. Dong, G. Veronis, M.J. Yun, Opt. Express 28, 31781–31795 (2020)

    Article  ADS  Google Scholar 

  32. D. Svintsov, V. Ryzhii, A. Satou, T. Otsuji, V. Vyurkov, Opt. Express 22, 19873–19886 (2014)

    Article  ADS  Google Scholar 

  33. H. Xu, H.J. Li, B. Li, Z.H. He, Z.H. Chen, M.F. Zheng, Sci. Rep. 6, 30877 (2016)

    Article  ADS  Google Scholar 

  34. J. Xu, H.W. Ruan, Y. Liu, H.J. Zhou, C.H. Yang, Opt. Express 25, 27234–27246 (2017)

    Article  ADS  Google Scholar 

  35. S. Popoff, G. Lerosey, M. Fink, A.C. Boccara, S. Gigan, Nat. Commun. 1, 81 (2010)

    Article  ADS  Google Scholar 

  36. H.A. Haus, W. Huang, Proc. IEEE 79, 1505–1518 (1991)

    Article  Google Scholar 

  37. K.R. Hiremath, J. Niegemann, K. Busch, Opt. Express 19, 8641–8655 (2011)

    Article  ADS  Google Scholar 

  38. Z.Y. Bao, J.C. Wang, Z.D. Hu, A. Balmakou, S. Khakhomov, Y. Tang, C.L. Zhang, Opt. Express 27, 31435–31445 (2019)

    Article  ADS  Google Scholar 

  39. K.J. Lee, Y.H. Ko, N. Gupta, R. Magnusson, Opt. Lett. 45, 4452–4455 (2020)

    Article  ADS  Google Scholar 

  40. W.J. Fang, C.Y. Yue, X.Y. Fan, H.H. Niu, X. Zhang, H.Y. Xu, N.K. Chen, C.L. Bai, Asia Commun. Photonics Conf. 10, 8595906 (2018)

    Google Scholar 

  41. S.X. Xia, X. Zhai, L.L. Wang, S.C. Wen, Photonics Res. 6, 692–702 (2018)

    Article  Google Scholar 

  42. A.R.S. Lins, J.R.F. Lima, ISSN 160, 353–360 (2020)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (11811530052); Intergovernmental Science and Technology Regular Meeting Exchange Project of Ministry of Science and Technology of China (CB02-20); Open Fund of State Key Laboratory of Applied Optics (SKLAO2020001A04); Undergraduate Research and Innovation Projects of Jiangnan University (2020366Y).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jicheng Wang or Wei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Shi, W., Li, Q. et al. Tunable TE/TM mode converter with an orthogonal graphene-based grating structure. Eur. Phys. J. Spec. Top. 231, 589–595 (2022). https://doi.org/10.1140/epjs/s11734-021-00382-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00382-9

Navigation