Skip to main content
Log in

Entropy generation for peristaltic flow of gold-blood nanofluid driven by electrokinetic force in a microchannel

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The physiology system loses its thermal energy in the form of blood perfusion to the neighbour cells. Such lost energy causes severe hypothermia, sudden death in heart surgeries, anaemia and high or low blood pressure. Therefore, physicians and biomedical engineers are increasingly interested in examining entropy generation to quantify biological systems’ energy loss. Further, entropy generation is employed as the thermodynamic state to approach the cancer cells during the chemotherapy treatment. Because of these applications, the current mathematical model illustrates the entropy generation of gold-blood pseudoplastic nanofluid flow in a microchannel with electrokinetic force and electro-conductive heating. The dimensional form of momentum and thermal equations are transformed into the dimensionless form using long-wavelength and small Reynolds number approximations. HPM computations have been executed to solve the influences of various parameters such as radiation, Weissenberg number, Helmholtz–Smoluchowski velocity, Joule heating parameter, Hartmann number and electroosmotic parameter on velocity, temperature, pressure drop, streamlines, and heat transfer rate and are portrayed through graphs. The results elucidate that the Hartmann number diminishes the blood pseudoplastic velocity in the channel centre. The gold-blood temperature expresses the decreasing nature by elevating the electro-osmosis parameter. The streamlines are dissipated from the channel centre due to the negative value of the Helmholtz–Smoluchowski parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

c :

Propagation of wave velocity (L/T)

d :

Half width of the channel at inlet

\({{\tilde{a}}}\) :

Wave amplitude (L)

a :

Fluid material parameter

\({{\mathrm{A}}_1}\) :

Indicates first Rivlin–Erickson tensor

e :

Electric charge (IT)

\({E_0}\) :

Electrokinetic body force

\({{\tilde{E}}}\) :

Electroosmotic potential

\({k_B}\) :

Boltzmann constant

\({n_0}\) :

Bulk concentration

n :

Power law index

P :

Dimensionless pressure

:

Reynolds number

\({m_a}\) :

Electro-osmotic parameter

\({{\tilde{u}}}\) and \({{\tilde{v}}}\) :

Axial velocity and transverse velocity along \( {{\tilde{\xi }}} \) and \({{\tilde{\eta }}} \) direction, respectively (L/T)

(\({{{\tilde{S}}}_{{{\tilde{x}}}{{\tilde{x}}}}}, {{{\tilde{S}}}_{{{\tilde{x}}}{{\tilde{y}}}}}, {S_{{{\tilde{y}}}{{\tilde{y}}}}}\)) :

Extra stress tensors

\({\left( {{C_p}} \right) _{nf}}\) :

Specific heat capacity of the nanofluid \((L^2/T^2K)\)

\({{\tilde{t}}}\) :

Time (T)

T :

Nanofluid temperature (K)

\({T_w}\) :

Constant wall temperature (K)

\({T_{av}}\) :

Absolute temperature (K)

\({k_B}\) :

Mean absorption coefficient

\({R_d}\) :

Radiation

Br :

Brinkman number

\({M^2}\) :

Hartmann number

We :

Weissenberg number

\({U_{HS}}\) :

Helmholtz–Smoluchowski velocity

\({N_G}\) :

Total entropy generation

\(\lambda \) :

Wavelength (L)

\(\mu \left( {{\varpi ^*}} \right) \) :

Apparent viscosity (M/LT)

\({\mu _0}\) :

Zero shear rate viscosity (M/LT)

\({\mu _\infty }\) :

Infinite shear rate viscosity (M/LT)

\(\beta \) :

Viscosity ratio parameter

\(\gamma _1 \) :

Joule heating parameter

\(\varPhi \) :

Viscous dissipation factor

\(\varLambda \) :

Temperature difference parameter (K)

\({\sigma _B}\) :

Stefan–Boltzmann constant \(M L^2 T^{-2} K^{-1}\)

\({\sigma _{nf}}\) :

Electrical conductivity of the nanofluid \((ML^3T^3A^2)\)

\({\rho _{nf}}\) :

Density of the nanofluid \((M/L^3)\)

\({\rho _e}\) :

Net ionic charge density \((M/L^3)\)

\({\varepsilon _0}\) :

Permittivity of free space \((M L^{-3} T^4 I^2)\)

\(\varepsilon \) :

Dielectric constant

\(\varsigma \) :

Charge balance (TI)

\(\delta \) :

Wave number (1/L)

\(\varGamma \) :

Fluid material parameters

References

  1. M.M. Rashidi, M.M. Bhatti, M.A. Abbas, M.E.-S. Ali, Entropy 18(4), 117 (2016)

    Article  ADS  Google Scholar 

  2. S. Noreen, Q.U. Ain, J. Therm. Anal. Calorim. 137(6), 1991–2006 (2019)

    Article  Google Scholar 

  3. S. Jakeer, P.B.A. Reddy, Phys. Scr. 95(12), 125203 (2020)

    Article  ADS  Google Scholar 

  4. H.T. Basha, R. Sivaraj, Eur. Phys. J. E. Soft Matter 44, 31 (2021)

    Article  Google Scholar 

  5. O.D. Makinde, A.S. Eegunjobi, Defect Diffus. Forum 387, 364–372 (2018)

  6. M.I. Khan, S.A. Khan, T. Hayat, S. Qayyum, A. Alsaedi, Eur. Phys. J. Plus 135, 249 (2020)

    Article  Google Scholar 

  7. R.L. Monaledi, O.D. Makinde, J. Therm. Anal. Calorim. 143(3), 1855–1865 (2020)

    Article  Google Scholar 

  8. M. Yadegari, A.B. Khoshnevis, Eur. Phys. J. Plus 136, 69 (2021)

    Article  Google Scholar 

  9. N.K. Ranjit, G.C. Shit, Energy 128, 649–660 (2017)

    Article  Google Scholar 

  10. D. Tripathi, A. Sharma, O. Anwar Bég, Int. J. Heat Mass Transf. 111, 138–149 (2017)

    Article  Google Scholar 

  11. R.K. Lodhi, K. Ramesh, Chinese J. Phys. 68, 106–120 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  12. J.C. Misra, B. Mallick, A. Sinha, A.R. Chowdhury, Eur. Phys. J. Plus 133, 195 (2018)

    Article  Google Scholar 

  13. S. Nadeem, M.N. Kiani, A. Saleem, A. Issakhov, Electrophoresis 41(13–14), 1198–1205 (2020)

    Article  Google Scholar 

  14. K.S. Mekheimer, R.E. Abo-Elkhair, A.M.A. Moawad, Int. J. Fluid Mech. Res. 47(2), 135–152 (2020)

    Article  Google Scholar 

  15. S. Noreen, S. Waheed, D.C. Lu, D. Tripathi, Int. Commun. Heat Mass Transf. 123, 105180 (2021)

    Article  Google Scholar 

  16. S.R.R. Reddy, P.B.A. Reddy, A.J. Chamkha, Nonlinear Anal. Model. Control 24(6), 853–869 (2019)

    MathSciNet  Google Scholar 

  17. S.M. Kayani, S. Hina, M. Mustafa, Arab. J. Sci. Eng. 45(7), 5179–5190 (2020)

    Article  Google Scholar 

  18. H.T. Basha, R. Sivaraj, V.R. Prasad, O.A. Beg, Int. J. Numer. Methods Heat Fluid Flow 31(5), 1475–1519 (2020)

  19. J. Akram, N. Akbar, D. Tripathi, Microvasc. Res. 132, 104062 (2020)

    Article  Google Scholar 

  20. I.L. Animasaun, B. Mahanthesh, O.K. Koriko, Int. J. Appl. Comput. Math. 4, 137 (2018)

    Article  Google Scholar 

  21. T. Hayat, B. Ahmed, F.M. Abbasi, A. Alsaedi, J. Therm. Anal. Calorim. 137(4), 1359–1367 (2019)

    Article  Google Scholar 

  22. S.R.R. Reddy, P.B.A. Reddy, A.M. Rashad, Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 235(12), 2192–2200 (2020)

    Article  Google Scholar 

  23. A.S. Oke, W.N. Mutuku, M. Kimathi, I.L. Animasaun, Nonlinear Eng. 9(1), 398–411 (2020)

    Article  ADS  Google Scholar 

  24. A. Kardgar, Eur. Phys. J. Plus 136, 58 (2021)

    Article  Google Scholar 

  25. A. Tanveer, S. Mahmood, T. Hayat, A. Alsaedi, Alexandria Eng. J. 60(3), 3369–3377 (2021)

    Article  Google Scholar 

  26. N.T.M. El-Dabe, M.Y. Abou-Zeid, M.A.A. Mohamed, M.M. Abd-Elmoneim, Arch. Appl. Mech. 91(3), 1067–1077 (2020)

    Article  Google Scholar 

  27. H.T. Basha, R. Sivaraj, V.R. Prasad, O.A. Beg, J. Therm. Anal. Calorim. 143, 2273–2289 (2020)

    Article  Google Scholar 

  28. H.T. Basha, R. Sivaraj, A.S. Reddy, A.J. Chamkha, M. Tilioua, SN Appl. Sci. 2, 1–14 (2020)

    Article  Google Scholar 

  29. H.T. Basha, R. Sivaraj, P.I. Mech, Eng. E-J Pro. (2021). https://doi.org/10.1177/09544089211013926

  30. R. Karthikeyan, J. Sajad, K. Anitha, S. Ashokkumar, Chaos 31, 083115 (2021)

    Article  Google Scholar 

  31. R. Karthikeyan, J. Sajad, M. Irene, K. Anitha, S. Ashokkumar, Chaos 31, 073117 (2021)

    Article  Google Scholar 

  32. R. Karthikeyan, K. Anitha, R. Balamurali, Chin. Phys. B. (2021). https://doi.org/10.1088/1674-1056/ac1b83

  33. R.K.D. Prakash, T. Goitom , V. Christos , N. Fahimeh, H. Iqtadar, Int. J. Nonlinear Sci. Numer. Simul. (2021) https://doi.org/10.1515/ijnsns-2020-0127

  34. R. Karthikeyan R. Arthanari, M. Irene, D. Prakash, K. Anitha, Chaos 31, 063111 (2021)

Download references

Funding

This work is partially funded by Centre for Nonlinear Systems, Chennai Institute of Technology, India vide funding number CIT/CNS/2021/RD/064.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Thameem Basha.

Appendix

Appendix

$$\begin{aligned}&A1 = \frac{{{\mu _{nf}}}}{{{\mu _f}}},\,A2 = - \frac{1}{2}\frac{F}{{{h^3}}},\,A3 = \frac{3}{2}\frac{F}{h},\,A4 = \left( {\frac{{{k_{nf}}}}{{{k_f}}} + R_d} \right) ,\\&A5 = \frac{{{\sigma _{nf}}}}{{{\sigma _f}}},\,A6 = 6\, A1\, \left( {1 - \beta } \right) \left( {n - 1} \right) W{e^a}A2,\,\\&A7 = - 6\, A5\, M{^2}A2,\, \\&A8 = \frac{{{m^3}{U_{HS}}}}{{\cosh \left( {mh} \right) }},\, A9 = A{2^3}A8\, a,\,\\&A10 = A9mah + 5A9\, mh + 6\, mA8\, A{2^3}h,\\&A11 = 3\, A9a + 15\, A9 + 18\, A8\, A{2^3},\,\\&A12 = \frac{{\left( {\, A10 + A11} \right) }}{{\left( {4\, {a^2} + 20\, a + 24} \right) {m^4}hA{2^3}A1}},\\&A13 = \frac{{\left( {\, A10 - A11} \right) }}{{\left( {4\, {a^2} + 20\, a + 24} \right) {m^4}hA{2^3}A1}},\\&A14 = A9mah + 3A9\, mh,\,A15 = A9a + 3\, A9,\,\\&A16 = \frac{{\left( {\, A14 - A15} \right) }}{{4aA1\, A{2^3}{m^4}\left( {a + 3} \right) {h^3}}},\\&A17 = \frac{{\left( {\, A14 + A15} \right) }}{{4\, aA1\, A{2^3}{m^4}\left( {a + 3} \right) {h^3}}},\\&A18 = A{2^3}A7\, {a^2}{h^5}{m^4},\,A19 = A7\, {h^5}A{2^3}a{m^4},\,\\&A20 = 30\, A6\, {6^a}{\left( {A2\, h} \right) ^{a + 3}}{m^4},\\&A21 = \frac{{\left( {A18 + 3\, A19 + A20} \right) }}{{60\, aA1\, A{2^3}{m^4}\left( {a + 3} \right) {h^3}}},\\&A22 = \frac{{\left( {A18 + 5\, A19 + 6\, A7\, {h^5}A{2^3}{m^4} + 2\, A20} \right) }}{{\left( {120\, {a^2} + 600\, a + 720} \right) {m^4}hA{2^3}A1}}, \\&A23 = \frac{{A6\, {6^a}{{\left( {A2\, \eta } \right) }^{a + 3}}}}{{A1A{2^3}a\left( {a + 2} \right) \left( {a + 3} \right) }},\\&A24 = \frac{{36\, \, A1\, A{2^2}BrW{e^a}{6^a}\left( {n - 1} \right) \left( {\beta \, - 1} \right) }}{{A4\, a\left( {{a^2} + 7\, a + 12} \right) }},\\&A25 = \frac{{3A{2^2}A5\, Br\, M{^2}}}{{10A4}},\\&A26 = \frac{{A2\, A3\, A5\, Br\, M{^2}}}{{2A4}} + \, \frac{{3Br\, A1\, A{2^2}}}{{A4}},\\&A27 = \frac{{A{3^2}A5\, Br\, M{^2}}}{{2A4}},\,\\&A28 = 3A{2^2}A5\, Br\, M{^2}{h^4},\,A29 = 5A2\, A3\, A5\, Br\, M{^2}{h^2},\,\\&A30 = 30A1\, A{2^2}Br\, {a^3}{h^2},\\&A31 = 5\, A{3^2}A5\, Br\, M{^2},\,\\&A32 = A28 + A29 + A30 + A31. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, S.R.R., Basha, H.T. & Duraisamy, P. Entropy generation for peristaltic flow of gold-blood nanofluid driven by electrokinetic force in a microchannel. Eur. Phys. J. Spec. Top. 231, 2409–2423 (2022). https://doi.org/10.1140/epjs/s11734-021-00379-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00379-4

Navigation