Skip to main content
Log in

Equilibria of a discrete Landau–de Gennes theory for nematic liquid crystals

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We study equilibria of a discrete version of the Landau–de Gennes energy functional for nematic liquid crystals. We consider the regime of small intersite coupling and present necessary and sufficient conditions for the continuation of equilibria of the decoupled Landau–de Gennes system. We also identify a class of small coupling Landau–de Gennes equilibria that correspond to equilibria of a discretized Oseen–Frank energy. The theory is presented for the case of \(2 \times 2\) Q-tensors and for the one-elastic-constant energy functionals in finite lattices and graphs. We also present some immediate consequences of the continuation theory to Landau–de Gennes and Oseen–Frank gradient dynamics in the small intersite coupling limit. The results rely on continuation and symmetry arguments and are also related to the construction of breather solutions of discrete nonlinear Schrödinger equations near the anticontinuous limit, a problem arising in photonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. G. Assanto, M. Karpierz, Nematicons: self-localized beams in nematic liquid crystals. Liq. Cryst. 36, 1161–1172 (2009)

    Article  Google Scholar 

  2. S. Aubry, P.Y. Le Daeron, The discrete Frenkel-Kontorova model and its extensions: I. Exact results for the ground states. Physica D 8, 381–422 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  3. R. Ben, J.P. Borgna, P. Panayotaros, Properties of localized solutions in nonlocal discrete NLS. Commun. Math. Sci. 15, 2143–2175 (2017)

    Article  MathSciNet  Google Scholar 

  4. B. Buffoni, J. Tolland, Analytic Theory of Global Bifurcation (Princeton Univ. Press, Princeton, 2003)

    Book  Google Scholar 

  5. J.G. Caputo, G. Cruz, P. Panayotaros, Bistable reaction-diffusion on a network. J. Phys. A Math. Theor. 48, 075102 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  6. T.A. Davis, E.C. Gartland Jr., Finite element analysis of the Landau-de Gennes minimization problem for liquid crystals. SIAM J. Numer. Anal. 35, 336–362 (1998)

    Article  MathSciNet  Google Scholar 

  7. I.C. Khoo, Liquid Crystals, 2nd edn. (Wiley, New York, 2007)

    Book  Google Scholar 

  8. P.D. De Gennes, J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1974)

    Google Scholar 

  9. N. Fenichel, Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21, 193–226 (1971/1972)

  10. E.C. Gartland Jr., Electric-field-induced instabilities in nematic liquid crystals. SIAM J. Appl. Math. 81(2), 304–334 (2021)

    Article  MathSciNet  Google Scholar 

  11. M.W. Hirsch, C.C. Pugh, M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, vol. 583. (Springer, Berlin, 1977)

  12. T. Kato, Perturbation Theory for Linear Operators (Springer-Verlag, New York, 1976)

    MATH  Google Scholar 

  13. F. Lederer, G.I. Stegeman, D.N. Christodoulides, G. Assanto, M. Segev, Silberberg discrete solitons in optics. Phys. Rep. 463, 1–126 (2008)

    Article  ADS  Google Scholar 

  14. R.S. MacKay, S. Aubry, Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators. Nonlinearity 7, 1623–1643 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  15. M.G. Forrest, Q. Wang, H. Zhou, Exact banded patterns from a Doi-Marruci-Greco model of nematic liquid crustal polymers. Phys. Rev. E 61, 6655–6662 (2000)

    Article  ADS  Google Scholar 

  16. F.C. Frank, On the theory of liquid crystals. Disc. Faraday Soc. 15, 1 (1958)

    Google Scholar 

  17. A. Majumdar, A. Zarnescu, Landau-De Gennes theory for nematic liquid crystals: the Oseen-Frank limit and beyond. Arch. Rational Mech. Anal. 196, 227–280 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  18. A. Majumdar, Equilibrium order parameters of nematic liquid crystals in the Landau-de Gennes theory. Eur. J. Appl. Mech. 21, 181–203 (2010)

    MathSciNet  MATH  Google Scholar 

  19. J.A. Martinez-Gonzalez, X. Li, M. Sadati, Y. Zhou, R. Zhang, P.F. Nealey, J.J. de Pablo, Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals. Nat. Commun. 8, 15854 (2017)

    Article  ADS  Google Scholar 

  20. S. Mkaddem, E.C. Gartland, Fine structure of defects of radial nematic droplets. Phys. Rev. E 62, 6694–6705 (2000)

    Article  ADS  Google Scholar 

  21. N.J. Motram, C.J.P. Newton, Introduction to Q-tensor theory, arXiv:1409.3542 (2014)

  22. M. Peccianti, G. Assanto, Nematicons. Phys. Rep. 516, 147–208 (2012)

    Article  ADS  Google Scholar 

  23. D.E. Pelinovsky, P.G. Kevrekidis, D.J. Frantzeskakis, Stability of discrete solitons in nolinear Schrödinger lattices. Physica D 212, 1–19 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  24. D.E. Pelinovsky, P.G. Kevrekidis, D.J. Frantzeskakis, Persistence and stability of discrete vortices in nonlinear Schrödinger lattices. Physica D 212, 20–53 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  25. P. Panayotaros, D.E. Pelinovsky, Periodic oscillations of discrete NLS solitons in the presence of diffraction management. Nonlinearity 21, 1265–1279 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  26. E.B. Priestley, P.J. Wojtovicz, P. Sheng, Introduction to Liquid Crystals (Plenum, New York, 1975)

    Google Scholar 

  27. M. Ravnik, S. Žumer, Landau-de Gennes modelling of nematic liquid crystal colloids. Liq. Cryst. 36, 1201–1214 (2009)

    Article  Google Scholar 

  28. R. Rosso, E. Virga, Metastable nematic hedgehogs. J. Phys. A Math. Gen. 29, 4247–4264 (1996)

    Article  ADS  Google Scholar 

  29. E. Zeidler, Nonlinear Functional Analysis and its Applications I (Springer, New York, 1986)

    Book  Google Scholar 

  30. J. Eldering, Normally Hyperbolic Invariant Manifolds: The Noncompact Case (Atlantis Press, Paris, 2013)

    Book  Google Scholar 

Download references

Acknowledgements

The author thanks A. Majumdar and J. Quintana for helpful discussions. Partial support from Grant PAPIT IN112119 is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panayotis Panayotaros.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panayotaros, P. Equilibria of a discrete Landau–de Gennes theory for nematic liquid crystals. Eur. Phys. J. Spec. Top. 231, 297–307 (2022). https://doi.org/10.1140/epjs/s11734-021-00354-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00354-z

Navigation