Skip to main content
Log in

Numerical simulation of effects of Soret and Dufour parameters on the peristaltic transport of a magneto six-constant Jeffreys nanofluid in a non-uniform channel: a bio-nanoengineering model

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The effect of the Soret and Dufour parameters on the peristaltic transport of a magneto six-constant Jeffreys nanofluids in a non-uniform channel are examined in this research. The mathematical modeling of six-constant Jeffreys nanofluids with double-diffusivity convection and inclined magnetic field is provided with a detailed description. To simplify partial differential equations that are highly nonlinear in nature, the long wavelength and low approximation of the Reynolds number are used. The reduced differential equations are solved by numerical method. The exact temperature, concentration and nanoparticle solutions are calculated. The importance of the various physical parameters of flow quantities is shown in numerical and graphical data. It is observed that the nanosolid particle concentration drops when large values of Brownian motion parameter and Soret number are considered. Furthermore, random collusions transfer molecular kinetic energy into thermal energy during the micro-mixing process of solid nanoparticles within the nanoliquid, resulting in a rise in fluid temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

UV :

Velocities in X and Y directions

\(a_{0},a_{1},a_{2} \) :

Material constants

m :

Non-uniform parameter of channel

\({\tilde{a}}\) :

Half width of channel

p :

Pressure

\(\rho _{\mathrm{f}}\) :

Fluid density

\(\rho _{\mathrm{p}}\) :

Nanoparticle mass density

\(\beta _{\mathrm{T}}\) :

Volumetric thermal expansion

\(( \rho c )_{\mathrm{f}}\) :

Heat capacity of fluid

k :

Thermal conductivity

\(\varTheta \) :

Nanoparticle volume fraction

\(D_{\mathrm{B}}\) :

Brownian diffusion coefficient

\(D_{\mathrm{s}}\) :

Solutal diffusively

\(D_{\mathrm{CT}}\) :

Soret diffusively

\(\theta \) :

Dimensionless temperature

\(\gamma \) :

Dimensionless solutal concentration

\(\varOmega \) :

Nanoparticle volume fraction

Re :

Reynolds number

\(\psi \) :

Stream function

\(\lambda _{1}\) :

Relaxation time

\(N_{\mathrm{b}}\) :

Brownian motion parameter

\(\beta \) :

Amplitude ratio

\(\eta \) :

Angle of inclination

\(G_{rT}\) :

Thermal Grashof number

\(\mu \) :

Viscosity of fluid

\(\lambda \) :

Wavelength

c :

Propagation of velocity

\({\tilde{t}}\) :

Time

\(b_{0}\) :

Half width at inlet

\(\rho _{f_{0}}\) :

Fluid density at \(T_{0}\)

g :

Acceleration due to gravity

\(\beta _{C}\) :

Volumetric solutal expansion

\((\rho c)_{p}\) :

Heat capacity of nanoparticle

T :

Temperature

C :

Solutal concentration

\(D_{\mathrm{T}}\) :

Thermophoretic diffusion coefficient

\(D_{\mathrm{TC}}\) :

Dufour diffusively

\(G_{rc}\) :

Solutal Grashof number

\(G_{rF}\) :

Nanoparticle Grashof number

Pr :

Prandtl number

\(\delta \) :

Wave number

M :

Hartmann number

Ln :

Nanofluid Lewis number

\(\lambda _{2}\) :

Delay time

\(N_{\mathrm{t}}\) :

Thermophoresis parameter

\(N_{\mathrm{TC}}\) :

Dufour parameter

\(N_{\mathrm{CT}}\) :

Soret parameter

Le :

Lewis number

References

  1. T.W. Latham, Fluid motion in a peristaltic pump (M.Sc. Thesis, Massachusetts Institute of technology, Cambridge, 1966)

  2. S.L. Weinberg, A theoretical and experimental treatment of peristaltic pumping and its relation to ureteral function (Ph.D. Thesis, MIT, Massachusetts, 1970)

  3. M. Mishra, A.R. Rao, Peristaltic transport of a Newtonian fluid in an asymmetric channel. Zeitschrift fur angewandte Mathematik and Physik 54, 532–550 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  4. A.H. Abd El-Naby, A.E.M. El-Misiery, Effects of an endoscope and generalized Newtonian fluid on peristaltic motion. Appl. Math. Comput. 128, 19–35 (2002)

    MathSciNet  MATH  Google Scholar 

  5. T. Hayat, N. Ali, S. Asghar, A.M. Siddiqui, Exact peristaltic flow in tubes with an endoscope. Appl. Math. Comput. 182, 359–68 (2006)

    MathSciNet  MATH  Google Scholar 

  6. G. Radhakrishnamacharya, Ch. Srinivasulu, Influence of wall properties on peristaltic transport with heat transfer. C. R. Mecanique 335, 369–373 (2007)

    Article  ADS  Google Scholar 

  7. R. Ellahi, M. Mubashir Bhatti, K. Vafai, Effects of heat and mass transfer on peristaltic flow in a non-uniform rectangular duct. Int. J. Heat Mass Transfer 71, 706–719 (2014)

    Article  Google Scholar 

  8. S. Akram, S. Nadeem, Influence of nanoparticles phenomena on the peristaltic flow of pseudoplastic fluid in an inclined asymmetric channel with different wave forms. Iran. J. Chem. Chem. Eng. 36, 107–124 (2017)

    Google Scholar 

  9. R. Ellahi, A. Riaz, S. Nadeem, M. Ali, Peristaltic flow of Carreau fluid in a rectangular duct through a porous medium. Math. Probl. Eng., 329639 (2012)

  10. J.C. Misra, S.D. Adhikary, Flow of a Bingham fluid in a porous bed under the action of a magnetic field: application to magneto-hemorheology. Eng. Sci. Technol. 20, 973–981 (2017)

    Google Scholar 

  11. J. Venkatesan, D.S. Sankar, K. Hemalatha, Y. Yatim, Mathematical analysis of Casson fluid model for blood rheology in stenosed narrow arteries. J. Appl. Math., 583809 (2013)

  12. K. Vajravelu, S. Sreenadh, P. Devaki, K.V. Prasad, Mathematical model for a Herschel–Bulkley fluid flow in an elastic tube. Cent. Eur. J. Phys. 9, 1357–1365 (2011)

    Google Scholar 

  13. S. Nadeem, S. Akram, Peristaltic flow of a Williamson fluid in an asymmetric channel. Commun. Nonlinear Sci. Numer. Simul. 15, 1705–1716 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  14. S. Nadeem, S. Akram, Peristaltic transport of a hyperbolic tangent fluid model in an asymmetric channel. Zeitschrift für Naturforschung AZeitschrift für Naturforschung A 64a, 559–567 (2009)

    Article  ADS  Google Scholar 

  15. S.N. Aristov, O.I. Skul’skii, Exact solution of the problem on a six-constant Jeffreys model of fluid in a plane channel. J. Appl. Mech. Techn. Phys. 43, 817–822 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  16. R. Ellahi, M. Mubashir Bhatti, A. Riaz, M. Sheikholeslami, Effects of magnetohydrodynamics on peristaltic flow of Jeffery fluid in a rectangular duct through a porous medium. J. Porous Media 17, 143–157 (2014)

    Article  Google Scholar 

  17. R. Ellahi, A. Riaz, S. Sohail, M. Mushtaq, Series solutions of magnetohydrodynamic peristaltic flow of a Jeffrey fluid in eccentric cylinders. J. Appl. Math. Inf. Sci. 7, 1441–1449 (2013)

    Article  Google Scholar 

  18. S. Haider, N. Ijaz, A. Zeeshan, Y.-Z. Li, Magneto-hydrodynamics of a solid-liquid two-phase fluid in rotating channel due to peristaltic wavy movement. Int. J. Numer. Methods Heat Fluid Flow 30, 2501–2516 (2019)

    Article  Google Scholar 

  19. S. Munawar, N. Saleem, Second law analysis of ciliary pumping transport in an inclined channel coated with Carreau fluid under a magnetic field. Coatings 10(3), 240 (2020)

    Article  Google Scholar 

  20. S. Akram, S. Nadeem, M. Hanif, Numerical and analytical treatment on peristaltic flow of Williamson fluid in the occurrence of induced magnetic field. J. Magn. Magn. Mater. 346, 142–151 (2013)

    Article  ADS  Google Scholar 

  21. S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles. ASME Int. Mech. Eng. Congress Expos. 66, 99–105 (1995)

    Google Scholar 

  22. J. Buongiorno, Convective transport in nanofluids. J. Heat Transf. 128, 240–250 (2006)

    Article  Google Scholar 

  23. W. Daungthongsuk, S. Wongwises, A critical review of convective heat transfer nanofluids. Renew. Sustain. Energy Rev. 11, 797–817 (2007)

    Article  Google Scholar 

  24. X.-Q. Wang, A.S. Mujumdar, A review on nanofluids—part I: theoretical and numerical investigations. Braz. J. Chem. Eng. 25, 613–630 (2008)

    Article  Google Scholar 

  25. X.-Q. Wang, A.S. Mujumdar, A review on nanofluids—part II: experiments and applications. Braz. J. Chem. Eng. 25, 631–648 (2008)

    Article  Google Scholar 

  26. S. Kakaç, A. Pramuanjaroenkij, Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transf. 52, 3187–3196 (2009)

    Article  Google Scholar 

  27. A.V. Kuznetsov, D.A. Nield, Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int. J. Therm. Sci. 49, 243–247 (2010)

    Article  Google Scholar 

  28. D.A. Nield, A.V. Kuznetsov, The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid. Int. J. Heat Mass Transf. 52, 5792–5795 (2009)

    Article  Google Scholar 

  29. R.E. Abo-Elkhair, M.M. Bhatti, K.S. Mekheimer, Magnetic force effects on peristaltic transport of hybrid bio-nanofluid (Au Cu nanoparticles) with moderate Reynolds number: An expanding horizon. Int. Commun. Heat Mass Transf. 123, 105228 (2021)

    Article  Google Scholar 

  30. M.M. Bhatti, Biologically inspired intra-uterine nanofluid flow under the suspension of magnetized gold (Au) nanoparticles: applications in nanomedicine. Inventions 6(2), 28 (2021)

    Article  Google Scholar 

  31. L. Zhang, M.M. Bhatti, M. Marin, K.S. Mekheimer, Entropy analysis on the blood flow through anisotropically tapered arteries filled with magnetic zinc-oxide (ZnO) nanoparticles. Entropy 22(10), 1070 (2020)

    Article  ADS  Google Scholar 

  32. R. Ellahi, A. Zeeshan, F. Hussain, A. Asadollahi, Peristaltic blood flow of couple stress fluid suspended with nanoparticles under the influence of chemical reaction and activation energy. Symmetry 11, 276 (2019)

    Article  Google Scholar 

  33. J. Prakash, D. Tripathi, A.K. Tiwari, S.M. Sait, R. Ellahi, Peristaltic pumping of nanofluids through a tapered channel in a porous environment: applications in blood flow. Symmetry 11, 868 (2019)

    Article  Google Scholar 

  34. A. Riaz, A. Zeeshan, M.M. Bhatti, R. Ellahi, Peristaltic propulsion of Jeffrey nano-liquid and heat transfer through a symmetrical duct with moving walls in a porous medium. Phys. A Stat. Mech. Appl. 545, 123788 (2020)

    Article  MathSciNet  Google Scholar 

  35. S. Akram, S. Nadeem, Significance of nanofluid and partial slip on the peristaltic transport of a Jeffrey fluid model in an asymmetric channel with different wave forms. IEEE Trans. Nanotechnol. 13, 375–385 (2014)

    Article  ADS  Google Scholar 

  36. O. Anwar Bég, D. Tripathi, Mathematica simulation of peristaltic pumping with double-diffusive convection in nanofluids: a bio-nanoengineering model. Proc. Inst. Mech. Eng. Part N J. Nanoeng. Nanosyst. 225, 99–114 (2011)

    Google Scholar 

  37. N.S. Akbar, Peristaltic flow of a Sutterby nanofluid with double-diffusive natural convection. J. Comput. Theor. Nanosci. 12, 1546–1552 (2015)

    Article  Google Scholar 

  38. S. Akram, Q. Afzal, Effects of thermal and concentration convection and induced magnetic field on peristaltic flow of Williamson nanofluid in inclined uniform channel. Eur. Phys. J. Plus 135, 857 (2020)

    Article  Google Scholar 

  39. S. Akram, Q. Afzal, E.H. Aly, Half-breed effects of thermal and concentration convection of peristaltic pseudoplastic nanofluid in a tapered channel with induced magnetic field. Case Stud. Therm. Eng. 22, 100775 (2020)

    Article  Google Scholar 

  40. H. Alolaiyan, A. Riaz, A. Razaq, N. Saleem, A. Zeeshan, M.M. Bhatti, Effects of double diffusion convection on third grade nanofluid through a curved compliant peristaltic channel. Coatings 10(2), 154 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safia Akram.

Ethics declarations

Conflict of interest

All the authors declared that there is no conflict of interest for this paper

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, S., Athar, M. & Saeed, K. Numerical simulation of effects of Soret and Dufour parameters on the peristaltic transport of a magneto six-constant Jeffreys nanofluid in a non-uniform channel: a bio-nanoengineering model. Eur. Phys. J. Spec. Top. 231, 535–543 (2022). https://doi.org/10.1140/epjs/s11734-021-00348-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00348-x

Navigation