Skip to main content
Log in

Design and implementation of arrhythmic ECG signals for biomedical engineering applications on FPGA

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this study, eight arrhythmic ECG signals from vital signals [sinus tachycardia, supraventricular tachycardia, premature ventricular complex (PVC), atrial fibrillation, AV block: 3rd degree, ventricular fibrillation, sinus bradycardia, first-degree AV block] were designed mathematically, and then modelled on FPGA by VHDL and Xilinx-Vivado software. The mathematical extrapolation of the signals was created in accordance with the literature and after examining the time and amplitude values of many ECG signals from the Physiobank ATM section of the MIT-BIH (Massachusetts Institute of Technology-Beth Israel Hospital) arrhythmia database. These signals were synthesized for the Zynq-7000 XC7Z020 FPGA chip for using in biomedical calibration applications and ECG simulators. The ECG signals were modelled with a 14-bit AD9767 DAC module that worked in coherence with this development board, and observed in real-time by 4 channel oscilloscope. Matlab-based ECG signals were taken as reference and compared with the results obtained from the FPGA-based ECG signals design. The FPGA chip resource consumption values obtained after the place–route process, the test results obtained from the design, the MSE (mean squared error) values of the designed signals, the operating frequencies of the system and each signal have been presented. The maximum operating speed of this system is 651.827 MHz. In this study, it has been shown that FPGA-based ECG signal generation system can be implemented on FPGA chips, and the designed system can be safely used in ECG simulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: There are no external data associated with manuscript.]

References

  1. B. Azmoudeh, D. Cvetkovic, Wavelets in biomedical signal processing and analysis, in Encyclopedia of Biomedical Engineering, vol. 1–3, ed. by R. Narayan (Elsevier, 2019), pp. 193–212

  2. D. A. Abraham, Signal processing, in: Applied Underwater Acoustics, ed. by T.H. Neighbors III, D. Bradley (Elsevier Inc., 2017), pp. 743–807

  3. S. Altayyar Saleh, M.A. Mousa, A.M. Alfaifi, A.E. Negm, M.O. Ali, The impact of calibration on medical devices performance and patient safety. Biomed. Res. 29(12), 2553–2560 (2018). https://doi.org/10.4066/biomedicalresearch.29-18-550

    Article  Google Scholar 

  4. B. Karaböce, H. O. Durmuş, E. Çetin, N. Tokman, Clinical engineering standards and practices, in Clinical Engineering Handbook, 2nd edn, ed. by E. Iadanza (Elsevier, 2019), pp. 742–752

  5. B.E. Demir, F. Yorulmaz, I. Güler, Mikrodenetleyici denetimli EKG simülatörü, in 15th National Biomedical Engineering Meeting. BIYOMUT 2010 (2010). https://doi.org/10.1109/BIYOMUT.2010.5479789

  6. M. Alçın, İ Pehlivan, İ Koyuncu, Hardware design and implementation of a novel ANN-based chaotic generator in FPGA. Opt. Int. J. Light Electron Opt. 127(13), 5500–5505 (2016). https://doi.org/10.1016/j.ijleo.2016.03.042

    Article  Google Scholar 

  7. S. Yazar, A. Makalesi, F. Karataş, İ Koyuncu, M. Tuna, M. Alçın, Bilgisayar Bilimleri ve Teknolojileri Dergisi Bulanık Mantık Üyelik Fonksiyonlarının Fpga Üzerinde Gerçeklenmesi. Bilgisayar Bilimleri ve Teknolojileri Dergisi 1(1), 1–9 (2020)

    Google Scholar 

  8. F. Karataş, İ. Koyuncu, M. Tuna, M. Alçin, FPGA based implementation of membership function for real time fuzzy logic application, in International Asian congress on Contemporary Sciences-3, 3. (UluslararasıAsya Modern Bilimler Kongresi, 2020), pp. 47–54

  9. M. Tuna, M. Alçın, İ Koyuncu, C.B. Fidan, İ Pehlivan, High speed FPGA-based chaotic oscillator design. Microprocess. Microsyst. (2019). https://doi.org/10.1016/j.micpro.2019.02.012

    Article  Google Scholar 

  10. T. Bonny, A.S. Elwakil, FPGA realizations of high-speed switching-type chaotic oscillators using compact VHDL codes. Nonlinear Dyn. 93(2), 819–833 (2018). https://doi.org/10.1007/s11071-018-4229-7

    Article  Google Scholar 

  11. İ Koyuncu, A. Turan Özcerit, The design and realization of a new high speed FPGA-based chaotic true random number generator. Comput. Electr. Eng. 58(2017), 203–214 (2017)

    Article  Google Scholar 

  12. T. Bonny, T. Rabie, A.H.A. Hafez, Multiple histogram-based face recognition with high speed FPGA implementation. Multimed. Tools Appl. 77(18), 24269–24288 (2018). https://doi.org/10.1007/s11042-018-5647-8

    Article  Google Scholar 

  13. T. Bonny, S. Henno, Image edge detectors under different noise levels with FPGA implementations. J. Circuits Syst. Comput. (2018). https://doi.org/10.1142/S0218126618502092

    Article  Google Scholar 

  14. I. Koyuncu, O. Cetin, F. Katircioglu, M. Tuna, Edge detection application with FPGA based Sobel operator, in 2015 23nd Signal Processing and Communications Applications Conference (SIU), pp. 1829–1832 (2015). https://doi.org/10.1109/SIU.2015.7130211

  15. I. Koyuncu, A.T. Ozcerit, I. Pehlivan, Implementation of FPGA-based real time novel chaotic oscillator. Nonlinear Dyn. 77(1–2), 49–59 (2014). https://doi.org/10.1007/s11071-014-1272-x

    Article  MathSciNet  Google Scholar 

  16. F. Schwiegelshohn, L. Gierke, M. Hubner, FPGA based traffic sign detection for automotive camera systems, in 10th International Symposium on Reconfigurable and Communication-centric Systems-on-Chip. ReCoSoC 2015, pp. 1–6 (2015). https://doi.org/10.1109/ReCoSoC.2015.7238089

  17. J.W. Tang, N. Shaikh-Husin, U.U. Sheikh, M.N. Marsono, FPGA-based real-time moving target detection system for unmanned aerial vehicle application. Int. J. Reconfig. Comput. 2016, 1–16 (2016). https://doi.org/10.1155/2016/8457908

    Article  Google Scholar 

  18. A. Alabdo, J. Pérez, G.J. Garcia, J. Pomares, F. Torres, FPGA-based architecture for direct visual control robotic systems. Mechatronics 39, 204–216 (2016). https://doi.org/10.1016/j.mechatronics.2016.05.008

    Article  Google Scholar 

  19. M.R. Maheshwarappa, M.D.J. Bowyer, C.P. Bridges, Improvements in CPU and FPGA Performance for Small Satellite SDR Applications. IEEE Trans. Aerosp. Electron. Syst. 53(1), 310–322 (2017). https://doi.org/10.1109/TAES.2017.2650320

    Article  ADS  Google Scholar 

  20. C. Yilmaz, I. Koyuncu, M. Alcin, M. Tuna, Artificial neural networks based thermodynamic and economic analysis of a hydrogen production system assisted by geothermal energy on field programmable gate array. Int. J. Hydrogen Energy 44(33), 17443–17459 (2019). https://doi.org/10.1016/J.IJHYDENE.2019.05.049

    Article  Google Scholar 

  21. H. Purwins, B. Li, T. Virtanen, J. Schlüter, S. Chang, T. Sainath, Deep learning for audio signal processing. IEEE J. Sel. Top. Signal Process. 13(2), 206–219 (2019). https://doi.org/10.1109/JSTSP.2019.2908700

    Article  ADS  Google Scholar 

  22. M.F. Taşdemir, FPGA Üzerinde Görüntü İşleme Algoritmalarının Gerçek ZamanlıOlarak Gerçekleştirilmesi (Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Afyon Kocatepe Üniversitesi, Afyonkarahisar, Türkiye, 2020)

  23. A. Bin Obadi, P.J. Soh, O. Aldayel, M.H. Al-Doori, M. Mercuri, D. Schreurs, A survey on vital signs detection using radar techniques and processing with FPGA implementation. IEEE Circuits Syst. Mag. 21(1), 41–74 (2021). https://doi.org/10.1109/MCAS.2020.3027445

    Article  Google Scholar 

  24. M. Alçin, M. Tuna, P. Erdoğmuş, İ Koyuncu, FPGA-based dual core TRNG design using ring and Runge–Kutta-Butcher based on chaotic oscillator. Chaos Theory Appl. 3(1), 20–28 (2021). https://doi.org/10.51537/chaos.783548

    Article  Google Scholar 

  25. N. Kontodimopoulos, N. Pallikarakis, I. Christov, I. Daskalov, In-house development of test equipment for quality control and training. Case study: a prototype ECG simulator-tester. Med. Eng. Phys. 20(10), 717–721 (1998)

    Article  Google Scholar 

  26. A. D. Paul, K. R. Urzoshi, R. S. Datta, A. Arsalan, A. M. Azad, Design and development of microcontroller based ECG simulator, in IFMBE Proceedings, vol. 35 (IFMBE, 2011), pp. 292–295. https://doi.org/10.1007/978-3-642-21729-6_76

  27. E. Güney, Z. Ekşi, M. Çakiroglu, WebECG: a novel ECG simulator based on MATLAB web figure. Adv. Eng. Softw. 45(1), 167–174 (2012). https://doi.org/10.1016/j.advengsoft.2011.09.005

    Article  Google Scholar 

  28. I. Valais, G. Koulouras, G. Fountos, C. Michail, D. Kandris, S. Athinaios, Design and construction of a prototype ECG simulator. e-J. Sci. Technol. 9(3), 11–18 (2014)

    Google Scholar 

  29. H. Shirzadfar, M. Khanahmadi, Design and development of ECG simulator and microcontroller based displayer. J. Biosens. Bioelectron. 9(3), 1–9 (2018). https://doi.org/10.4172/2155-6210.1000256

    Article  Google Scholar 

  30. A. Das, C.R. Chaudhuri, I. Das, Advanced portable ECG simulator: product development and validation, in Proceedings—2019 Women Institute of Technology Conference on Electrical and Computer Engineering, WITCON ECE 2019 (2019), pp. 187–191. https://doi.org/10.1109/WITCONECE48374.2019.9092906

  31. C. Suharinto, A. Budianto, N.T. Sanyoto, Design of electrocardiograph signal simulator. Indones. J. Electron. Electromed. Eng. Med. Inform. 2(1), 43–47 (2020). https://doi.org/10.35882/ijeeemi.v2i1.9

    Article  Google Scholar 

  32. Y. Yang, X. Huang, X. Yu, Real-time ECG monitoring system based on FPGA, in IECON Proceedings (Industrial Electronics Conference) (2007), pp. 2136–2140. https://doi.org/10.1109/IECON.2007.4459886.

  33. M. Cvikl, A. Zemva, FPGA-oriented HW/SW implementation of ECG beat detection and classification algorithm. Digit. Signal Process. A Rev. J. 20(1), 238–248 (2010). https://doi.org/10.1016/j.dsp.2009.05.008

    Article  Google Scholar 

  34. Y. Jewajinda, P. Chongstitvatana, FPGA-based online-learning using parallel genetic algorithm and neural network for ECG signal classification, in ECTI-CON2010: The, ECTI International Conference on Electrical Engineering/Electronics. Computer, Telecommunications and Information Technology, 2010 (2010), pp. 1050–1054

  35. A.T. Özdemir, K. DanişMan, Fully parallel ANN-based arrhythmia classifier on a single-chip FPGA: Fpaac. Turk. J. Electr. Eng. Comput. Sci. 19(4), 667–687 (2011). https://doi.org/10.3906/elk-1006-488

    Article  Google Scholar 

  36. V. Desai, Electrocardiogram (ECG/EKG) using FPGA, Master’s theses, The Faculty of the Department of Computer Science, San Jose State University, USA (2012)

  37. H.K. Chatterjee, R. Gupta, M. Mitra, Real time P and T wave detection from ECG using FPGA. Procedia Technol. 4, 840–844 (2012). https://doi.org/10.1016/j.protcy.2012.05.138

    Article  Google Scholar 

  38. A.T. Özdemir, K. Danisman, A comparative study of two different FPGA-based arrhythmia classifier architectures. Turk. J. Electr. Eng. Comput. Sci. 23, 2089–2106 (2015). https://doi.org/10.3906/elk-1305-41

    Article  Google Scholar 

  39. K. Aboutabikh, N. Aboukerdah, Design and implementation of a multiband digital filter using FPGA to extract the ECG signal in the presence of different interference signals. Comput. Biol. Med. 62, 1–13 (2015). https://doi.org/10.1016/j.compbiomed.2015.03.034

    Article  Google Scholar 

  40. S. Woo, W. Lee, G. Ryu, ECG simulator design with Spartan-3 FPGA—Proceedings of the Korean Institute of Information and Communication Sciences conference, in Proceedings of the Korean Institute of Information and Commucation Sciences Conference, pp. 834–837 (2015)

  41. M.G. Egila, M.A. El-Moursy, A.E. El-Hennawy, H.A. El-Simary, A. Zaki, FPGA-based electrocardiography (ECG) signal analysis system using least-square linear phase finite impulse response (FIR) filter. J. Electr. Syst. Inf. Technol. 3(3), 513–526 (2016). https://doi.org/10.1016/j.jesit.2015.07.001

    Article  Google Scholar 

  42. D. Alhelal, K. A. I. Aboalayon, M. Daneshzand, M. Faezipour, FPGA-based denoising and beat detection of the ECG signal, in 2015 IEEE Long Island Systems, Applications and Technology Conference, LISAT 2015, (2015). https://doi.org/10.1109/LISAT.2015.7160184

  43. L. Wang, L. Xu, D. Zhao, Y. Yao, D. Song, FPGA-based design and implementation of arterial pulse wave generator using piecewise Gaussian-cosine fitting. Comput. Biol. Med. 59, 142–151 (2015). https://doi.org/10.1016/j.compbiomed.2015.02.005

    Article  Google Scholar 

  44. Y. Ma, T. Li, Y. Ma, K. Zhan, Novel real-time FPGA-based R-wave detection using lifting wavelet, circuits. Syst. Signal Process. 35(1), 281–299 (2016). https://doi.org/10.1007/s00034-015-0063-z

    Article  MATH  Google Scholar 

  45. D. Panigrahy, M. Rakshit, P.K. Sahu, FPGA implementation of heart rate monitoring system. J. Med. Syst. 40(3), 1–12 (2016). https://doi.org/10.1007/s10916-015-0410-4

    Article  Google Scholar 

  46. X. Gu, Y. Zhu, S. Zhou, C. Wang, M. Qiu, G. Wang, A real-time FPGA-based accelerator for ECG analysis and diagnosis using association-rule mining. ACM Trans. Embed. Comput. Syst. (2016). https://doi.org/10.1145/2821508

    Article  Google Scholar 

  47. S. Kumar, G. Singh, M. Kaur, FPGA implementation of electrocardiography (ECG) signal processing 1, Int. J. Eng. Sci. 21 (December 2016), 2229–6913 (2016)

  48. M. Wess, S. Manoj, A. Jantsch, Neural network based ECG anomaly detection on FPGA and trade-off analysis, in 2017 IEEE International Symposium on Circuits and Systems (2017), pp. 1–4. https://doi.org/10.1109/ISCAS.2017.8050805

  49. M. Alfaro-Ponce, I. Chairez, R. Etienne-Cummings, Automatic detection of electrocardiographic arrhythmias by parallel continuous neural networks implemented in FPGA. Neural Comput. Appl. 31(2), 363–375 (2019). https://doi.org/10.1007/s00521-017-3051-3

    Article  Google Scholar 

  50. N. S. Madiraju, N. Kurella, R. Valapudasu, FPGA implementation of ECG feature extraction using Time domain analysis, Electr. Eng. Syst. Sci. Signal Process. (eess.SP); Hardw. Archit. 1–4 (2018)

  51. N.S. Madiraju, N. Kurella, R. Valapudasu, FPGA Implementation of ECG feature extraction using Time domain analysis. arXiv:1802.03310 (2018)

  52. K. Meddah, M.K. Talha, M. Bahoura, H. Zairi, FPGA-based system for heart rate monitoring. IET Circuits Devices Syst. 13(6), 771–782 (2019). https://doi.org/10.1049/iet-cds.2018.5204

    Article  Google Scholar 

  53. F. Karatas, I. Koyuncu, M. Alçın, M. Tuna, DESIGN OF FPGA BASED ECG SIGNAL USING VHDL, in 1st International Hazar Scientific Research Congress (2020), pp. 114–127

  54. A. Giorgio, C. Guaragnella, D.A. Giliberti, Improving ECG signal denoising using wavelet transform for the prediction of malignant arrhythmias. Int. J. Med. Eng. Inform. 12(2), 135–150 (2020). https://doi.org/10.1504/IJMEI.2020.106898

    Article  Google Scholar 

  55. S. Jain, FPGA-Assisted Framework for Heart Rate Evaluation using ECG Signal Processing, in 2020 IEEE 17th India Council International Conference. INDICON 2020 (2020), pp. 1–6. https://doi.org/10.1109/INDICON49873.2020.9342125

  56. Y. Zhu et al., A multi-channel ECG acquisition system based on FPGA. J. Phys. Conf. Ser. (2021). https://doi.org/10.1088/1742-6596/1924/1/012023

    Article  Google Scholar 

  57. İ Koyuncu, Kriptolojik Uygulamalar Için FPGA Tabanlıyeni Kaotik Osilatörlerin ve Gerçek Rasgele Sayıüreteçlerinin Tasarımıve Gerçeklenmesi (Fen Bilimleri Enstitüsü, Doktora Tezi, Sakarya Üniversitesi, 2014)

  58. C. M. Maxfield, FPGA architectures, in: FPGAs: Instant Access (Elsevier, 2008), pp. 13–48

  59. ALINX AX7020: Zynq-7000 SoC XC7Z010 FPGA Development Board. Online. https://www.xilinx.com/products/boards-and-kits/1-t9ddos.html. Accessed 1 Apr 2021

  60. A.D. John, L.A. Fleisher, Electrocardiography: the ECG. Anesthesiol. Clin. N. Am. 24(4), 697–715 (2006). https://doi.org/10.1016/j.atc.2006.08.005

    Article  Google Scholar 

  61. EKG Library LITFL ECG Library Basics. Online. https://www.litfl.com/ecg-library/. Accessed: 1 Apr 2021

  62. M. J. Alemzadeh-Ansari, Chapter 3—Electrocardiography, in Practical Cardiology (Elsevier, 2017), pp. 17–60

  63. G. Wagner, Electrocardiography, in Electrophysiological Disorders of the Heart. ed. by S. Saksena, A.J. Camm, P.A. Boyden, P. Dorian, N. Goldschlager (Churchill Livingstone: Elsevier Inc., London, 2005), pp. 95–128

    Chapter  Google Scholar 

  64. MIT-BIH Arrhythmia Database v1.0.0. Online. https://www.physionet.org/content/mitdb/1.0.0/. Accessed 1 Apr 2021

Download references

Acknowledgements

This study is sponsored by the Scientific and Technological Research Council of Turkey (TUBITAK) with project number 119E659.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Avcioglu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karataş, F., Koyuncu, İ., Tuna, M. et al. Design and implementation of arrhythmic ECG signals for biomedical engineering applications on FPGA. Eur. Phys. J. Spec. Top. 231, 869–884 (2022). https://doi.org/10.1140/epjs/s11734-021-00334-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00334-3

Navigation