Skip to main content
Log in

Fractal dimension of Katugampola fractional integral of vector-valued functions

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Calculating fractal dimension of the graph of a function not simple even for real-valued functions. While through this paper, our intention is to provide some initial theories for the dimension of the graphs of vector-valued functions. In particular, we give a fresh attempt to estimate the fractal dimension of the graph of the Katugampola fractional integral of a vector-valued continuous function of bounded variation defined on a closed bounded interval in \(\mathbb {R}.\) We prove that dimension of the graph of a continuous vector-valued function of bounded variation is 1 and so is the dimension of the graph of its Katugampola fractional integral. Further, for a Hölder continuous function, we provide an upper bound for the upper box dimension of the graph of each coordinate function of the Katugampola fractional integral of the function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data has been listed.]

References

  1. Akkurt, A., Kaçar, Z., Yildirim, H.: Generalized fractional integral inequalities for continuous random variables. Journal of probability and statistics 2015 (2015)

  2. R. Almeida, Variational problems involving a Caputo-type fractional derivative. Journal of Optimization Theory and Applications 174(1), 276–294 (2017)

    Article  MathSciNet  Google Scholar 

  3. Almeida, R., Bastos, N.R.: An approximation formula for the Katugampola integral. Journal of Mathematical Analysis 7(1), 23–30 (2016)

  4. S. Banerjee, D. Easwaramoorthy, A. Gowrisankar, Fractal Functions (Springer, Dimensions and Signal Analysis, 2021)

    Book  Google Scholar 

  5. Barnsley, M.: Fractals everywhere 2nd edition (1993)

  6. Chandra, S., Abbas, S.: The calculus of bivariate fractal interpolation surfaces. Fractals 29(03), 2150066 (2021)

  7. Chandra, S., Abbas, S.: Analysis of fractal dimension of mixed Riemann-Liouville fractional integral. arXiv preprint arXiv:2105.06648 (2021)

  8. Chandra, S., Abbas, S.: Box dimension of mixed Katugampola fractional integral of two-dimensional continuous functions. arXiv preprint arXiv:2105.01885 (2021)

  9. Falconer, K.: Fractal geometry: mathematical foundations and applications. John Wiley & Sons (2004)

  10. Gordon, R.A.: Real Analysis: A first course. Pearson College Division (2002)

  11. A. Gowrisankar, R. Uthayakumar, Fractional calculus on fractal interpolation for a sequence of data with countable iterated function system. Mediterranean Journal of Mathematics 13(6), 3887–3906 (2016)

    Article  MathSciNet  Google Scholar 

  12. S. Jha, S. Verma, Dimensional analysis of \(\alpha \)-fractal functions. Results in Mathematics 76(4), 1–24 (2021)

    Article  MathSciNet  Google Scholar 

  13. U.N. Katugampola, New approach to a generalized fractional integral. Applied Mathematics and Computation 218(3), 860–865 (2011)

    Article  MathSciNet  Google Scholar 

  14. Katugampola, U.N.: A new approach to generalized fractional derivatives. arXiv preprint arXiv:1106.0965 (2011)

  15. N. Kôno, On self-affine functions. Japan Journal of Applied Mathematics 3(2), 259–269 (1986)

    Article  MathSciNet  Google Scholar 

  16. Y. Liang, Box dimensions of Riemann-Liouville fractional integrals of continuous functions of bounded variation. Nonlinear Analysis: Theory, Methods & Applications 72(11), 4304–4306 (2010)

    Article  MathSciNet  Google Scholar 

  17. Massopust, P.R.: Fractal functions, fractal surfaces, and wavelets. Academic Press (2016)

  18. McClure, M.: The Hausdorff dimension of Hilbert’s coordinate functions. Real Analysis Exchange pp. 875–883 (1998)

  19. M. Moshrefi-Torbati, J. Hammond, Physical and geometrical interpretation of fractional operators. Journal of the Franklin Institute 335(6), 1077–1086 (1998)

    Article  MathSciNet  Google Scholar 

  20. R. Nigmatullin, Fractional integral and its physical interpretation. Theoretical and Mathematical Physics 90(3), 242–251 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  21. Oldham, K., Spanier, J.: The fractional calculus theory and applications of differentiation and integration to arbitrary order. Elsevier (1974)

  22. Podlubny, I.: Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Elsevier (1998)

  23. Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fractional calculus and Applied Analysis 5(4) (2002)

  24. Ross, B.: Fractional calculus and its applications: proceedings of the international conference held at the University of New Haven, June 1974, vol. 457. Springer (2006)

  25. Sagan, H.: Space-filling curves. Springer Science & Business Media (2012)

  26. S.G. Samko, Fractional integrals and derivatives, theory and applications (Minsk, Nauka I Tekhnika, 1987)

    Google Scholar 

  27. Verma, S., Liang, Y.: Effect of the Riemann-Liouville fractional integral on unbounded variation points. arXiv preprint arXiv:2008.11113 (2020)

  28. S. Verma, P. Viswanathan, A note on Katugampola fractional calculus and fractal dimensions. Applied Mathematics and Computation 339, 220–230 (2018)

    Article  MathSciNet  Google Scholar 

  29. Verma, S., Viswanathan, P.: Katugampola fractional integral and fractal dimension of bivariate functions. Results in Mathematics 76(165) (2021)

  30. X.E. Wu, J.H. Du, Box dimension of Hadamard fractional integral of continuous functions of bounded and unbounded variation. Fractals 25(03), 1750035 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  31. H. Yildirim, Z. Kirtay, Ostrowski inequality for generalized fractional integral and related inequalities. Malaya J. Mat 2(3), 322–329 (2014)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, M., Som, T. & Verma, S. Fractal dimension of Katugampola fractional integral of vector-valued functions. Eur. Phys. J. Spec. Top. 230, 3807–3814 (2021). https://doi.org/10.1140/epjs/s11734-021-00327-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00327-2

Navigation