Skip to main content
Log in

Multifractal characterization and cross correlations of reference evapotranspiration time series of India

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This study performs the multifractal characterization of reference evapotranspiration (ET0) and its controlling factors of five locations in India with climatic diversity. First, the ET0 and the predictor variables like minimum air temperature (\(T_{min})\), maximum air temperature (\(T_{max})\) and average wind speed (AW) of five stations are analysed using multifractal detrended fluctuation analysis (MFDFA). The investigation could detect long-term persistence and multifractality of different series, irrespective of the climatic condition and geographical location. Higher persistence (>0.8) is noted in the ET0 and \(T_{min}\) series indicating higher predictability in all the stations and highest multifractality was noted for the highly complex wind speed time series. Further, the ET0 estimates by Hargreaves Samani (HS) and Droogers and Allen (DA) methods differs in their persistence and multifractal properties, controlled by the geographic location of the station. Subsequently, multifractal cross correlation analysis (MFCCA) is used to investigate the correlations between ET0 and other variables. MFCCA analysis showed that, for all the time series considered, the joint scaling exponent is roughly the average of individual scaling exponents, and base width of the joint spectra is lower than that of individual series, validating two universal properties of multifractal cross correlation studies for agro-meteorological datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.G. Allen, L.S. Pereira, D. Raes, M. Smith, Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage. Paper no. 56. FAO, Rome (1998)

  2. H. Tabari, M.E. Grismer, S. Trajkovic, Comparative Analysis of 31 Reference Evapotranspiration Methods under Humid Conditions. Irrig. Sci. 31, 107–117 (2011)

    Article  Google Scholar 

  3. H.E. Hurst, The long-term Storage capacity of Reservoir. Trans. Amer. Soc. Civil Eng.116, Paper 2447, (1951)

  4. B. Mandelbrot, The fractal geometry of nature (WH Freeman Publishers, New York, 1982)

    MATH  Google Scholar 

  5. Y. Tessier, S. Lovejoy, P. Hubert, D. Schertzer, S. Pecknold, Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions. J. Geophys. Res. 101, 26427–26440 (1996)

    Article  ADS  Google Scholar 

  6. D. Schertzer, S. Lovejoy, Physical modelling and analysis of rain and clouds by aniso-tropic scaling multiplicative processes. J. Geophy. Res. 92, 9693–9714 (1987)

    Article  ADS  Google Scholar 

  7. K. Dahlstedt, H. Jensen, Fluctuation spectrum and size scaling of river flow and level. Physica A: Stat. Mech. Appl. 348, 596–610 (2005)

    Article  ADS  Google Scholar 

  8. J.-F. Muzy, F. Bacry, A. Arneodo, Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method. Phys. Rev. E. 47, 875–884 (1993)

    Article  ADS  Google Scholar 

  9. C.K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanley, A.L. Goldberger, Mosaic organization of DNA nucleotides. Phys. rev. E. 49(2), 1685–1689 (1994)

    Article  ADS  Google Scholar 

  10. J.W. Kantelhardt, S.A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, H.E. Stanley, Multifractal detrended fluctuation analysis of nonstationary time series. Physica A: Stat. Mech. Appl. 316(1–4), 87–114 (2002)

    Article  ADS  Google Scholar 

  11. Y.-X. Huang, Arbitrary Order Hilbert Spectral Analysis Definition and Application to Fully Developed Turbulence and Environmental Time-series. (Ph.D thesis, University of Lille France, 2009)

  12. J.W. Kantelhardt, E. Koscielny-Bunde, D. Rybski, P. Braun, A. Bunde, S. Havlin, Long-term persistence and multifractality of precipitation and river runoff records. J. Geophys. Res.: Atmos. 111(D1) (2006)

  13. Q. Zhang, C.-Y. Xu, Z. Yu, C.-L. Liu, D. Chen, Multifractal analysis of streamflow records of the East river basin (Pearl river). China. Physica A 388, 927–934 (2009)

    Article  ADS  Google Scholar 

  14. C.R. Rego, H.O. Frota, M.S. Gusmao, Multifractality of Brazilian rivers. J. Hydrol. 495, 208–215 (2013)

    Article  ADS  Google Scholar 

  15. E. Li, X. Mu, G. Zhao, P. Gao, Multifractal detrended fluctuation analysis of streamflow in the Yellow River Basin. China. Water 7(4), 1670–1686 (2015)

    Article  Google Scholar 

  16. X. Tan, T.W. Gan, Multifractality of Canadian precipitation and streamflow. Int. J. Climatol. 37(S1), 1221–1236 (2017)

    Article  MathSciNet  Google Scholar 

  17. G. Lin, Xi Chen Xi., Z. Fu, Temporal–spatial diversities of long-range correlation for relative humidity over China. P Physica A: Stat. Mech. Appl. 383(2), 585-594 (2007)

  18. G. Lin, Z. Fu, A universal model to characterize different multi-fractal behaviors of daily temperature records over China. Physica A: Stat. Mech. Appl. 387, 573–579 (2008)

    Article  ADS  Google Scholar 

  19. A. Burgueño, X. Lana, C. Serra, M.D. Martínez, Daily extreme temperature multifractals in Catalonia (NE Spain). Phys. Lett. A 378, 874–885 (2014)

    Article  ADS  Google Scholar 

  20. Z.G. Yu, Y. Leung, Y.D. Chen, Q. Zhang, V. Anh, Y. Zhou, Multifractal analyses of daily rainfall time series in Pearl River basin of China. Physica A 405, 193–202 (2014)

    Article  ADS  Google Scholar 

  21. P. Baranowski, J. Krzyszczak, C. Slawinski, H. Hoffmann, J. Kozyra, A. Nieróbca, K. Siwek, A. Gluza, Multifractal analysis of meteorological time-series to assess climate impacts. Clim. Res. 65, 39–52 (2015)

    Article  Google Scholar 

  22. N. Kalamaras, K. Philippopoulos, D. Deligiorgi, C.G. Tzanis, G. Karvounis, Multifractal scaling properties of daily air temperature time series. Chaos, Solitons and Fractals 98, 38–43 (2017)

    Article  ADS  Google Scholar 

  23. J. Krzyszczak, P. Baranowski, M. Zubik, H. Hoffmann, Temporal scale influence on multifractal properties of agro-meteorological time series. Agri. Forest Meteorol. 239, 223–235 (2017)

    Article  ADS  Google Scholar 

  24. J. Krzyszczak, P. Baranowski, M. Zubik, V. Kazandjiev, V. Georgieva, C. Sławiński, K. Siwek, J. Kozyra, A. Nieróbca, Multifractal characterization and comparison of meteorological time series from two climatic zones. Theoret. App. Climatol. 137, 1811–1824 (2019)

    Article  ADS  Google Scholar 

  25. S. Adarsh, V. Nourani, D.S. Archana, D.S. Dharan, Multifractal description of rainfall fields over India. J. Hydrol., https://doi.org/10.1016/j.jhydrol.2020.124913,(2020)

  26. S. Adarsh, S.R. Chavan, M. Ali, D.S. Archana, D.S. Dharan, M.I. Khan, Spatiotemporal variability of multifractal properties of fine resolution daily gridded rainfall fields over India. Nat. Haz. https://doi.org/10.1007/s11069-021-04523-0 (2021)

  27. J. Gomez Gomez, R. Carmona-Cabezas, A.B. Ariza-Villaverde, E.G. de Ravé, F.J. Jiménez-Hornero, Multifractal detrended fluctuation analysis of temperature in Spain (1960–2019). Physica A: Stat. Mech. Appl. 578, 126118 (2021)

  28. S. Adarsh, J. Krzyszczak, P. Baranowski, D.S. Archana, P. Nandhinee Krishna, L.J. Nityanjaly, T. Vandana, M. Ali, Multifractal Cross Correlation Analysis of Agro-Meteorological Datasets (Including Reference Evapotranspiration) of California Atmosphere, https://doi.org/10.3390/atmos11101116 (2020)

  29. U. Patil, N. Sidnal, Study of the fractal nature of evapotranspiration time series from agricultural regions of Northern Karnataka. Int. J. Intell. Syst. Techn. Appl. 19(5), 444–457 (2020)

    Google Scholar 

  30. Z. Cun, L. Chuan, Z. Lu, Z. Yaling, C. Long, J. Shouzheng, X. Liwen, Multifractal characteristics analysis of daily reference evapotranspiration in different climate zones of China. Physica A: Stat. Mech. Appl., 583, article id. 126273. https://doi.org/10.1016/j.physa.2021.126273(2021)

  31. B. Podobnik, H.E. Stanley, Detrended cross-correlation analysis: a new method for analyzing two non-stationary time series. Phys. Rev. Lett. 100(8), 084102 (2008)

    Article  ADS  Google Scholar 

  32. W.X. Zhou, Multifractal detrended cross-correlation analysis for two non-stationary signals. Phys. Rev. E. 77, 066211 (2008)

    Article  ADS  Google Scholar 

  33. Z.Q. Jiang, W.X. Zhou, Multifractal detrending moving-average cross-correlation analysis. Phys. Rev. E. 84, 016106 (2011)

    Article  ADS  Google Scholar 

  34. P. Oświȩcimka, S. Drożdż, M. Forczek, S. Jadach, J. Kwapień, Detrended cross-correlation analysis consistently extended to multifractality. Physical Rev E. 89, 023305 (2014)

    Article  ADS  Google Scholar 

  35. M. Watorek, S. Drożdż, P. Oświȩcimka, M. Stanuszek, Multifractal cross-correlations between the world oil and other financial markets in 2012–2017. Energy Econ. 81, 874–885 (2019)

    Article  Google Scholar 

  36. S. Drożdż, L. Minati, P. Oświeȩcimka, M. Stanuszek, M. Watorek, Signatures of the Crypto-Currency Market Decoupling from the Forex. Future Internet, 11, 154; https://doi.org/10.3390/fi11070154 , (2019)

  37. G.F. Zebende, DCCA cross-correlation coefficient: Quantifying level of cross-correlation. Physica A: Stat. Mech. Appl. 390, 614–618 (2011)

    Article  ADS  Google Scholar 

  38. R.T. Vassoler, G.F. Zebende, DCCA cross-correlation coefficient apply in time series of air temperature and air relative humidity. Physica A: Stat. Mech. Appl. 391, 2438–2443 (2012)

    Article  ADS  Google Scholar 

  39. Y. Wu, Y. He, M. Wu, C. Lu, S. Gao, Y. Xu, Multifractality and cross correlation analysis of streamflow and sediment fluctuation at the apex of the Pearl River Delta. Sci. Rep. 8, 16553 , https://doi.org/10.1038/s41598-018-35032-z , (2018)

  40. P. Dey, P.P. Mujumdar, Multiscale evolution of persistence of rainfall and streamflow. Adv Wat. Resour. 121, 285–303 (2018)

    Article  ADS  Google Scholar 

  41. S. Adarsh, D.S. Dharan, A.R. Nandhu, B. Anand Vishnu, V.K. Mohan, M. Watorek, Multifractal description of streamflow and suspended sediment concentration data from Indian river basins. Acta Geophy. 68, 519–535 (2020)

  42. A.B. Ariza-Villaverde. P. Pavon-Dominguez, R. Cabezas-Carmona. E. Rave, Joint multifractal analysis of air temperature, relative humidity and reference evapotranspiration in the middle zone of the Guadalquivir river. Agri. Forest Meteorol. 278,107657 (2019)

  43. P. Sonali, D. Nagesh Kumar, Spatio-temporal variability of temperature and potential evapotranspiration over India. J. Wat. Clim. Chang. 7 (4), 810–822 (2016)

  44. M. Cobaner, H. Citakoğlu, T. Haktanir, O. Kisi, Modifying Hargreaves–Samani equation with meteorological variables for estimation of reference evapotranspiration in Turkey. Hydrol. Res. 48, 480–497

  45. R.B. Cleveland, W.S. Cleveland, J. McRae, I. Terpenning, STL: A seasonal-trend decomposition procedure based on loess. J. Off. Stat. 6, 3–73 (1990)

    Google Scholar 

  46. S. Banerjee, D. Easwaramoorthy, A. Gowrisankar, Fractal Functions, Dimensions and Signal Analysis (Springer, Cham, Switzerland, 2021)

    Book  Google Scholar 

  47. S. Banerjee, M.K. Hassan, S. Mukherjee, A. Gowrisankar, Fractal patterns in non-linear dynamics (CRC Press, London, 2021)

    MATH  Google Scholar 

  48. S. Feng, Q. Hu, W. Qian, Quality control of daily meteorological data in China, 1951–2000: a new dataset. Int. J. Climatol. 24, 853–870 (2004)

    Article  Google Scholar 

  49. J. Estévez, A.P. García-Marín, J.A. Morábito, M. Cavagnaro, Quality assurance procedures for validating meteorological inputvariables of reference evapotranspiration in Mendoza province (Argentina). Agr. Wat. Manage. 172, 96–109 (2016)

    Article  Google Scholar 

  50. E.A.F.E. Ihlen, Introduction to multifractal detrended fluctuation analysis in MATLAB. Frontiers in physiology 3, 141 (2012)

    Article  Google Scholar 

  51. S. Adarsh, S. Sulaiman, K.K. Murshida, P. Nooramol, Scale-dependent prediction of reference evapotranspiration based on Multivariate Empirical Mode Decomposition. Ain-Shams Eng. J. 9, 1839–1848 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

Authors express their sincere thanks to Dr. Marcin Wa̧torek, Department of Theory of Complex Systems (NZ44), Institute of Nuclear Physics, Kraków, Poland for the valuable guidance and constructive suggestions for implementing the codes of MFCCA as part of this research work. Authors thank the service of India Meteorological Department for supplying necessary data for performing this research work.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adarsh, S., Nityanjaly, L.J., Pham, Q.B. et al. Multifractal characterization and cross correlations of reference evapotranspiration time series of India. Eur. Phys. J. Spec. Top. 230, 3845–3859 (2021). https://doi.org/10.1140/epjs/s11734-021-00325-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00325-4

Navigation