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Abstract Cell development from an undifferentiated stem cell to a differentiated one is essential in forming
an organism. In this paper, various bifurcations of a stem cell during this process are studied using a
model based on Furusawa and Kaneko’s hypothesis. Furusawa and Kaneko’s hypothesis tells that the gene
expression of stem cells is chaotic. By developing to a differentiated cell, the gene expression in more order,
which is the cause of losing pluripotency. In this model, the chaotic dynamics of gene expression in the
stem cells become ordered during the developments. Various patterns and bifurcation points can be seen
during development. The bifurcation points and their predictions during the process of cell development
are studied in this paper. Some well-known critical slowing down indicators are used to show the variations
of slowness during the cell’s development and predict the bifurcation points. It is vital since the unexpected
changes of the state can cause a disaster. All of the indicators have a proper trend by approaching the
bifurcation points and faring away.

1 Introduction

Cells are the basic units that generate every organ.
Without knowing the cells, the study of life is point-
less. Stem cells are capable of developing any particular
cell with their tasks. In other words, they are undiffer-
entiated cells that can develop into any differentiated
one [1]. This property makes them exceptional choices
in medical applications [2]. Pluripotent stem cells go to
an undirected path to become any differentiated cell.
Furusawa and Kaneko have proposed a hypothesis on
the development of stem cells. This hypothesis tells that
the gene expression of stem cells is chaotic while devel-
oping to a differentiated cell, the gene expression in
more order, which is the cause of losing pluripotency
[3].
Modeling various phenomena in real life can help
researchers to know more about their behaviors. Neu-
ron models are one of the examples [4]. A photosensitive
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neuron was presented in [5]. The modeling of neurons
under magnetic flow is an exciting topic [6]. Recently
some researchers try to implement neuron models using
electronic elements [7]. The application of a memris-
tive neuron model under electromagnetic radiation was
discussed in [8]. A chaotic cancer model was studied
in [9]. Recently a chaotic map was proposed to model
the cells’ development [10]. Various bifurcations of the
COVID-19 model were discussed in [11]. The dynamics
of COVID-19 spreading were studied in [12].
Many chaotic systems can be implemented by electronic
elements [13–15]. Implementation of a memristive sys-
tem was studied in [16]. Chaotic systems can be used
in encryption goals [17]. A random number generator
based on chaotic dynamics was studied in [18]. Fluc-
tuations of biological and physical data can be inter-
preted as the oscillations of chaotic dynamics [19–21].
So studying the dynamical properties of biological mod-
els are very important. Multistability is important in
the investigation of dynamical systems [22–24]. Vari-
ous multistability of a circuit was studied in [25,26].
Dynamical systems can show various dynamics [27,28].
Various dynamical properties of a chaotic system were
discussed in [29]. Coexisting attractors of chaotic maps
were studied in [30,31].
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The bifurcation diagram is one of the most potent tools
in nonlinear dynamics [32]. It reveals various attractors
of the system as well as the route of dynamic varia-
tions. Also, bifurcation points are crucial. The variation
of a system from one dynamic to another can be horri-
ble if the environment is not preparing. Recently vari-
ous methods for the prediction of bifurcation points are
studied [33,34]. One of these methods is the Lyapunov
exponent, which approaches zero by getting close to
bifurcation points [35]. Estimation of Lyapunov expo-
nents in a particular class of systems was discussed in
[36]. Some of the most common indicators of bifurca-
tion points are autocorrelation and kurtosis. However,
they should be modified to predict bifurcations in a
period-doubling route to chaos [37].

In this paper, we discuss different dynamics of the
model of the development of cells and predict its various
bifurcation points. The model is based on Furusawa and
Kaneko’s hypothesis. The model shows chaotic dynam-
ics of gene expression changes to order dynamics in
the process of development. Prediction of the system’s
bifurcations using three slowing down indicators is dis-
cussed.

2 Studied model

Evolving stem cells from an undifferentiated cell to a
differentiated one with particular tasks have a compli-
cated route, modeled as Eq. (1) [10]. This model was
based on the hypothesis of Furuxawa and Kaneko [3]. It
tells that the cell’s state in its evolution by passing the
time can have various dynamics. In a cell division, the
cells’ numbers are increased. However, the interaction
between cells becomes more powerful. Furthermore, the
cells go through simpler dynamics in their evolution.

xk+1 = xk + r sin (xk) (1)

This model is studied in r ∈ [0 , 5 . 3]. The system’s dif-
ferent behaviors by parameter r were studied, such as
equilibria, periodic, chaotic, and biotic dynamics. This
model has been discussed in various studies [38]. Fig-
ure 1 shows the bifurcation diagram of Eq. (1) with r.
This parameter is the feature of pluripotency.

The model shows various dynamics by decreasing
parameter r in the evolution of cells. In large parame-
ters, the cells have pluripotent dynamics in a wide inter-
val, which is called bios. Decreasing parameter makes
the cells divided into various differentiated chaotic
dynamics. Again decreasing parameter r causes sim-
ple dynamics such as periodic and equilibrium point,
which is the most differentiated version of cell dynam-
ics. In this state, each cell acts its particular tasks and
can not change to another one. When the cell is in a
pluripotent dynamic (bios), it can transform into any
unique dynamics (various chaotic and per attractors).
However, after the transition, the system becomes more
special until it receives the equilibrium points. In other
words, the cell dynamics vary from a biotic one to

Fig. 1 Bifurcation diagram of Eq. (1) by changing r and
three initial values as x0 = π

2
for black dynamics, x0 = 5π

2
for blue dynamics, and x0 = −π

2
for red ones

chaotic ones and then to order dynamics by changing
the feature of pluripotency. The model has many coex-
isting dynamics, and three of them are shown in Fig. 1
using three initial conditions.

3 Indicating bifurcation points of the cell

The development of cells has various bifurcation points
like many other biological systems. The occurrence of
bifurcation points can be a disaster if we do not have
any information about them. It leads researchers to
study the prediction of bifurcation points. In the pre-
vious section, various dynamics of the cell model were
discussed . Here, the bifurcations of the Eq. (1) and
the prediction of these variations are discussed. Three
methods are used to study the bifurcation points of the
studied model. Each method is applied to the system’s
three various studied routes from pluripotent stem cells
to differentiated ones. However, we know that many
other routes have the same properties as the three
studied ones. In the rest of the paper, the left y-label
presents the values of x variable, and the right y-label
presents the studied indicators’ values. Also, all meth-
ods are applied to each of the three attractors’ data, as
discussed in Fig. 1.

The first method is the modified autocorrelation
(AC) with lag-1. Autocorrelation of signal S at lag-1 is
defined as AC=E[(St−μ)(St+1−μ)]

σ2 , where μ , σ2 are mean
and variance of the signal. AC measures the memory of
dynamics. In the modified method, the signal’s period
is estimated, and the autocorrelation is applied to the
subvectors of various cycles. Figure 2 shows the bifurca-
tion diagram (left y-label) and autocorrelation (right y-
label) of the black attractors. By approaching the bifur-
cation points, the AC approaches one. So it warns the
prediction of bifurcation points before its occurrence.
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Fig. 2 Bifurcation
diagram of Eq. (1) by
changing r and x0 = π

2
(left y-label). The green
measure is the absolute
value of the modified AC
measure (right y-label)

Fig. 3 Bifurcation
diagram of Eq. (1) by
changing r and x0 = −π

2
(left y-label). The green
measure is the absolute
value of the modified AC
measure (right y-label)

Fig. 4 Bifurcation
diagram of Eq. (1) by
changing r and x0 = 5π

2
(left y-label). The green
measure is the absolute
value of the modified AC
measure (right y-label)

Various bifurcations are predicted. However, it cannot
predict bifurcation from biotic dynamics to chaotic one.

The measure is calculated for the data of the three
studied attractors. Figure 3 shows AC calculated for the
red route and Fig. 4 for the blue one. These measures
show reliable predictions in the bifurcation points of the
period-doubling route to chaos, but not a meaningful
trend for bios’ transition to chaos.

The other measure used in the prediction of bifur-
cations of the cell model is kurtosis (K). K is the

fourth moment as k =
1
n

∑n
t=1(St−μ)3√

1
n

∑n
t=1(St−μ)2

. It is based

on the variations of the tail of data distribution. It
decreased when approaching a bifurcation point. Here,
the modified kurtosis is used, calculated on the vectors
of extracted cycles, as discussed in the AC method. Fig-
ure 5 shows the kurtosis method, which is calculated for
the data of black attractors. By approaching the bifur-
cation points, K decreases, and by getting away from
them, it increases.

Figures 6 and 7 show the K measure for red and
blue attractors. The measure has the same trend in
approaching and getting away from bifurcation points
discussed in the black attractor. However, in the transi-
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Fig. 5 Bifurcation
diagram of Eq. (1) by
changing r and x0 = π

2
(left y-label). The green
measure is the logarithm of
the modified K measure
(right y-label)

Fig. 6 Bifurcation
diagram of Eq. (1) by
changing r and x0 = −π

2
(left y-label). The green
measure is the logarithm of
the modified K measure
(right y-label)

Fig. 7 Bifurcation
diagram of Eq. (1) by
changing r and x0 = 5π

2
(left y-label). The green
measure is the logarithm of
the modified K measure
(right y-label)

tion from biotic dynamics to chaotic ones, the measure
does not show any notable trend.

The last measure which is used here is the Lyapunov
exponent (LY). It was recently presented as an indica-
tor of bifurcation points. However , its calculations have
some issues. Lyapunov exponent applied to the raw
time series and can predict various bifurcation points.
Its value is zero in the bifurcation points.

Figure 8 presents the LY of the cell model calculated
for the data of the black attractor. The LY measure
approaches zero in various bifurcation points. So LY

can predict various bifurcations, but it fails to predict
bifurcation from bios to chaos. Figures 9 and 10 show
the LY measure calculated for the red and blue attrac-
tors. They show the same pattern in the prediction of
bifurcations.

An impressive result was that the values of indicators
for each of the three studied dynamics (black, red, and
blue) were the same, which means that they all have
the same dynamical properties. However, they approach
various differentiated cells with various tasks.
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Fig. 8 Bifurcation
diagram of Eq. (1) by
changing r and x0 = π

2
(left y-label). The green
measure is the LY measure
(right y-label)

Fig. 9 Bifurcation
diagram of Eq. (1) by
changing r and x0 = −π

2
(left y-label). The green
measure is the LY measure
(right y-label)

Fig. 10 Bifurcation
diagram of Eq. (1) by
changing r and x0 = 5π

2
(left y label). The green
measure is the LY measure
(right y label)

Comparing these three indicators show that all of
them have a proper trend by approaching the bifurca-
tion points and faring away from them. In theory, AC
should be one in the bifurcation points, and K should
be zero. However, in numerical calculations, AC and K
do not satisfy these values in some of the bifurcation
points. Lyapunov exponent approaches zero, and it can
be seen in the bifurcation points.

4 Conclusion

Here various bifurcation points of a model for the cell
dynamics were studied. The system has presented the
behavior of stem cells’ time evolution from pluripotent
cells to differentiated ones with a particular task. The
model was based on Furusawa and Kaneko’s hypothesis.
It has shown that the biotic dynamics of stem cells’ gene
expression became chaotic, periodic, and equilibrium
points in the time evolution. So the system had var-
ious bifurcation points. Three indicators were used to
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predict these points: modified autocorrelation, modified
kurtosis, and Lyapunov exponent. Their results have
shown that these measures can predict different bifur-
cations in the period-doubling route to chaos. How-
ever, they did not have any trend in the bifurcation of
biotic dynamics to chaotic ones. The results have also
presented that the indicators had the same pattern in
predicting bifurcations of the three studied dynamics
(black, red, and blue). Comparing these three indica-
tors has shown that all of them have a proper trend
by approaching the bifurcation points and faring away
from them in the period-doubling route to chaos. In
theory, autocorrelation should be one in the bifurcation
points, and kurtosis should be zero. However, in numer-
ical calculations, AC and K did not satisfy these values
in some of the bifurcation points. Lyapunov exponent
approaches zero, and it can be seen in the bifurcation
points.
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28. R. Capeáns, J. Sabuco, M.A. Sanjuán, J.A. Yorke, Par-
tially controlling transient chaos in the Lorenz equa-
tions. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
375, 20160211 (2017)

29. Y. Adiyaman, S. Emroglu, M. K. UÇar, M. Yildiz,
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