Skip to main content
Log in

Exact solution of Hartemann–Luhmann equation of motion for a charged particle interacting with an intense electromagnetic wave/pulse

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We report an exact solution of the Hartemann–Luhmann equation of motion for a charged particle interacting with an intense electromagnetic wave/pulse. It is found that the radiation reaction force has a significant affect on the charged particle dynamics and the particle shows, on average, a net energy gain over a period of time. Further, using a MATHEMATICA based single particle code, the net energy gained by the particle is compared with that obtained using Landau–Lifshitz and Ford–O’Connell equation of motion, for different polarizations of the electromagnetic wave. It is found that the average energy gain is independent of both the chosen model equation and polarization of the electromagnetic wave. Our results thus show that the simpler and hence analytically tractable Hartemann–Luhmann equation of motion (as compared to Landau–Lifshitz and Ford–O’Connell equation of motion) is adequate for calculations of practical use (for e.g. energy calculation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.J. Griffiths, Introduction to Electrodynamics, 4th edn. (Pearson, Boston, 2013), re-published by Cambridge University Press in 2017. https://cds.cern.ch/record/1492149

  2. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999), ISBN 9780471309321, http://cdsweb.cern.ch/record/490457

  3. Schott, Electromagnetic Radiation and the Mechanical Reactions Arising from it (University Press Cambridge, 1912)

  4. M.R. Ferris, J. Gratus, J. Math. Phys. 52, 092902 (2011). https://doi.org/10.1063/1.3635377

  5. H.A. Lorentz, The Theory of Electrons (Teubner, Leipzig, 1909)

    Google Scholar 

  6. M. Abraham, Theorie der Elektrizitat (Teubner, Leipzig, 1905)

    MATH  Google Scholar 

  7. P.A.M. Dirac, Proc. R. Soc. A 117, 610 (1928)

    ADS  Google Scholar 

  8. P.A.M. Dirac, Proc. R. Soc. A 172, 950 (1938)

    Google Scholar 

  9. H.J. Bhabha, Proc. R. Soc. A 117, 148 (1939)

  10. J.A. Wheeler, R.P. Feynman, Rev. Mod. Phys. 17, 157 (1945)

  11. F. Rohrlich, Phys. Rev. Lett. 12, 375 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  12. C. Teitelboim, Phys. Rev. D 1, 1572 (1970)

  13. A.O. Barut, Phys. Rev. D 10, 3335 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  14. F. Rohrlich, Classical Charged Particles 3rd edn. (World Scientific, Syracuse University, New York, 2007)

  15. C.S. Shen, Phys. Rev. Lett. 24, 410 (1970)

    Article  ADS  Google Scholar 

  16. Y. Hadad, L. Labun, J. Rafelski, N. Elkina, C. Klier, H. Ruhl, Phys. Rev. D 82, 096012 (2010)

    Article  ADS  Google Scholar 

  17. Y. Kravets, A. Noble, D. Jaroszynski, Phys. Rev. E 88, 011201 (2013)

    Article  ADS  Google Scholar 

  18. V. Sagar, S. Sengupta, P.K. Kaw, Phys. Plasmas 22, 123102 (2015). https://doi.org/10.1063/1.4936797

  19. X.L. Li, G.W. Ford, R.F. OConnell, Phys. Rev. A 42, 4519 (1990)

  20. G. Ford, R. OConnell, Physics Letters A 157, 217 (1991)

  21. G. Ford, R. OConnell, Physics Letters A 174, 182 (1993)

  22. C.J. Eliezer, Proc. R. Soc. Lond. A 194, 543 (1948)

  23. L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields, 4th edn. (Butterworth-Heinemann, 1980), ISBN 0750627689, http://www.worldcat.org/isbn/0750627689

  24. T. Mo, C. Papas, Phys. Rev. D 4(12), 3566–3571 (1971)

  25. P. Caldirola, Riv. Nuovo Cimento Soc. Ital. Fis. 2, 1 (1979)

    Article  MathSciNet  Google Scholar 

  26. F.V. Hartemann, N.C. Luhmann, Phys. Rev. Lett. 74, 1107 (1995)

    Article  ADS  Google Scholar 

  27. Y. Yaremko, J. Math. Phys. 54, 093115 (2013)

    Article  MathSciNet  Google Scholar 

  28. I.V. Sokolov, N.M. Naumova, J.A. Nees, G.A. Mourou, V.P. Yanovsky, Phys. Plasmas 16, 093115 (2009)

    Article  ADS  Google Scholar 

  29. F. Rohrlich, Am. J. Phys. 68, 11099 ((2000))

  30. F.V. Hartemann, High-Field Electrodynamics (CRC Press, Boca Raton, 2001)

  31. C. Bild, D.A. Deckert, H. Ruhl, Phys. Rev. D 99, 096001 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  32. P.K. Kaw, R.M. Kulsrud, Phys. Fluids 16, 321 (1973). https://aip.scitation.org/doi/pdf/10.1063/1.1694336

  33. P. Gibbon, Short Pulse Laser Interaction with Matter (Imperial College Press, London, 2005)

    Book  Google Scholar 

  34. See http://www.extreme-light-infrastructure.eu/ (2013). Accessed 4 Aug 2021

  35. A.D. Piazza, Lett. Math. Phys. 83, 305 (2008)

  36. H. Heintzmann, M. Grewing, Zeitschrift für Physik A Hadrons and nuclei 251, 77 (1972)

    Article  Google Scholar 

  37. G. Lehmann, K.H. Spatschek, Phys. Rev. E 84, 046409 (2011)

    Article  ADS  Google Scholar 

  38. R. Ondarza-Rovira, T.J.M. Boyd, IEEE Trans. Plasma Sci. 48, 685 (2020)

    Article  ADS  Google Scholar 

  39. Y. Zhang, S. Krasheninnikov, Phys. Plasmas 26, 010702 (2019). https://doi.org/10.1063/1.5075720

Download references

Acknowledgements

We thank Dr. Sarveshwar Sharma for help with the numerical solution of the Hartemann–Luhmann equation and the anonymous referees for constructive suggestions.

Author information

Authors and Affiliations

Authors

Contributions

The problem was formulated by S.S and executed by S.K.M. Both S.K.M. and S.S. contributed to the final version of the paper.

Corresponding author

Correspondence to Sudip Sengupta.

Analytical expressions for particle momentum and position

Analytical expressions for particle momentum and position

The integrals \({I}_{1}\), \(\mathbf {I}_{2}\) and expressions for momentum and position of a particle, starting from origin with zero initial momentum and interacting with an elliptically polarized electromagnetic wave train, are given by

$$\begin{aligned} I_{1}&=\frac{1}{4} a_{0}^{2}\left[ -2\phi +(2\delta ^{2}-1)\sin (2\phi )\right] \end{aligned}$$
(30)
$$\begin{aligned} I_{2x}&=\frac{1}{24}a_{0}^{3}\delta \nonumber \\&\qquad \Big [(15-6\delta ^{2})\sin (\phi )+(2\delta ^{2}-1)\sin (3\phi )-12 \phi \cos (\phi )\Big ] \end{aligned}$$
(31)
$$\begin{aligned} I_{2y}&=\frac{1}{24} a_{0}^{3}g\sqrt{(1-\delta ^{2})}\Big [-3(2\delta ^{2}+3)\cos (\phi ) \nonumber \\&\quad -(2\delta ^{2}-1)(\cos (3\phi )+8)-12 \phi \sin (\phi )\Big ] \end{aligned}$$
(32)
$$\begin{aligned} {p}_{x}&= {\varDelta } \Big [ - a_{0} \delta (\cos (\phi ) -1) -\frac{1}{24} a_{0}^{3} \tau _{0}\delta \Big \{(15-6\delta ^{2})\sin (\phi ) \nonumber \\&\quad +(2\delta ^{2}-1)\sin (3\phi ) -12 \phi \cos (\phi )\Big \} \Big ] \end{aligned}$$
(33)
$$\begin{aligned} {p}_{y}&= \varDelta \Big [ - a_{0} g\sqrt{(1-\delta ^{2})} \sin (\phi ) -\frac{1}{24} a_{0}^{3} \tau _{0} g\sqrt{(1-\delta ^{2})} \nonumber \\&\quad \times \Big \{-3(2\delta ^{2}+3)\cos (\phi )-(2\delta ^{2}-1) \nonumber \\&(\cos (3\phi )+8) -12 \phi \sin (\phi )\Big \}\Big ] \end{aligned}$$
(34)
$$\begin{aligned} p_{z}&= {\varDelta }\Bigg [ - \frac{a_{0}^{2}}{2}\Big (\sqrt{1-\delta ^{2}} \sin (\phi )^{2} + \delta ^{2} (\cos (\phi )-1)^{2}\Big ) \nonumber \\&\quad + \frac{1}{24} {\tau _{0}} a_{0}^{4} \Big \{(\delta ^{2} (\cos (\phi )-1))\Big \{(15-6\delta ^{2})\sin (\phi ) \nonumber \\&\quad +(2\delta ^{2}-1)\sin (3\phi )-12 \phi \cos (\phi )\Big \} \nonumber \\&\quad + (1-\delta ^{2}) \sin (\phi )\Big \{-3(2\delta ^{2}+3)\cos (\phi ) \nonumber \\&\quad -(2\delta ^{2}-1) (\cos (3\phi )+8) -12 \phi \sin (\phi )\Big \}\Big \}+ \frac{1}{1152} \nonumber \\&\quad \tau _{0}^{2} a_{0}^{6}\Big \{ \delta ^{2} \Big ((15-6\delta ^{2})\sin (\phi )+(2\delta ^{2}-1)\sin (3\phi )\nonumber \\&\quad -12 \phi \cos (\phi )\Big )^{2} + (1-\delta ^{2}) \Big (-3(2\delta ^{2}+3)\cos (\phi ) \nonumber \\&\quad -(2\delta ^{2}-1)(\cos (3\phi )+8) -12 \phi \sin (\phi )\Big )^{2} \Big \} \Bigg ] \end{aligned}$$
(35)
$$\begin{aligned} x(\phi )&=a_{0}\delta \big (\phi -\sin (\phi )\big ) \nonumber \\&\quad +\frac{\tau _{0}a_{0}^{2}\delta }{72}\Big [(-81+18\delta ^{2})\cos (\phi )+(1-2\delta ^{2})\cos (3\phi ) \nonumber \\&\quad +\Big \{80-16\delta ^{2} +9\phi \sin (\phi )\Big \}\Big ] \end{aligned}$$
(36)
$$\begin{aligned} y(\phi )&=a_{0}\sqrt{1-\delta ^{2}}\big (1-\cos (\phi )\big ) \nonumber \\&\quad +\frac{\tau _{0}a_{0}^{2}}{72}\sqrt{1-\delta ^{2}} \Big \{24(1-\delta ^{2})\phi +36\phi \cos (\phi ) \nonumber \\&\quad -9(7+2\delta ^{2}) \sin (\phi ) +(1-2\delta ^{2})\sin (\phi )\Big \} \end{aligned}$$
(37)
$$\begin{aligned} z(\phi )&=\frac{1}{13824} \nonumber \\&\times \Bigg [13824\Bigg \{ \frac{a_{0}^{2}(2(1\!+\!2\delta ^{2})\phi -8\delta ^{2}\sin (\phi )\!+\!(-1\!+\!2\delta ^{2})\sin (\phi )}{8}\Bigg \} \nonumber \\&\quad +24\tau _{0}a_{0}^{3}\Big [a_{0} \Big \{-99+460\delta ^{2} +52\delta ^{4}+72\phi ^{2} \nonumber \\&\quad -24(-8+27\delta ^{2}+2\delta ^{4})\cos (\phi )+96(-1+2\delta ^{2})\cos (2\phi ) \nonumber \\&\quad +8\delta ^{2}(1-2\delta ^{2})\cos (3\phi ) +(1-2\delta ^{2})^{2}\cos (4\phi ) \nonumber \\&\quad -288\delta ^{2}\phi \sin (\phi )+72(-1+2\delta ^{2})\phi \sin (2\phi )\Big \}\Big ] \nonumber \\&\quad -a_{0}^{6}\tau _{0}^{2}\Big \{-12\phi (105+188\delta ^{2} - 188\delta ^{4} \nonumber \\&\quad -64\delta ^{6}+24\phi ^{2})+2304(-1+\delta ^{4})\phi \cos (\phi )+1152 \nonumber \\&\quad \times (1-2\delta ^{2})\phi \cos (2\phi )-36(1-2\delta ^{2})^{2}\phi \cos (4\phi ) \nonumber \\&\quad -576(-7-2\delta ^{2}+7\delta ^{4} +2\delta ^{6})\sin (\phi ) +9(-1+2\delta ^{2}) \nonumber \\&\quad \times (85-20\delta ^{2}+20\delta ^{4}-48\phi ^{2})\sin (2\phi )-64(1-2\delta ^{2}-\delta ^{4} \nonumber \\&\quad +2\delta ^{6})\sin (3\phi ) +36(1-2\delta ^{2})^{2}\sin (4\phi ) \nonumber \\&\quad +(-1+2\delta ^{2})^{3}\sin (6\phi )\Big \}\Bigg ] \end{aligned}$$
(38)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S.K., Sengupta, S. Exact solution of Hartemann–Luhmann equation of motion for a charged particle interacting with an intense electromagnetic wave/pulse . Eur. Phys. J. Spec. Top. 230, 4165–4174 (2021). https://doi.org/10.1140/epjs/s11734-021-00260-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00260-4

Navigation