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Abstract In the paper, a new 3D energy harvesting system is provided. This work discussed the Lagrange
approach to derive the differential equations of motion in the case of energy harvesting systems. An
electromechanical system consists of a mechanical resonator, a piezoelectric transducer and electrical circuit
with the load resistor. A flexible slender rod clamped at the bottom and loaded by the tip mass is proposed
as the resonator. Moving in the 3D space, it enables the system to avoid the gravitational potential barrier
of the straight vertical shape in case of buckling. This paper investigates the response of the rod deflection
and the root mean square power output of selected vibration mode shapes with an attached tip mass.

1 Introduction

Vibration transducers for scavenging the ambient energy
provide an emerging new technology to power small
autonomous devices and/or to charge their batteries.
The proper modeling of mechanical systems is useful
in solutions, especially practical for systems that show
nonlinear behaviors. In contrast to linear models where
the harvester resonance is gauged to the ambient fre-
quency [1–3], the nonlinear devices are characterized
by the frequency broadband [4]. It originates from the
existence of multiple solutions, and consequently addi-
tional resonances of rational or multiple frequencies and
also from natural inclinations of the resonance curves
in the nonlinear systems [4,5]. In other case [6], the
extra degrees-of-freedom system are discussed. Induced
by nonlinearities, the discrete real space models were
applied to model the system resonator [7]. Such model-
ing is applied to the whole energy harvesting system
including the power electronics in the electrical cir-
cuits. Consequently, the authors [8] derived the equa-
tions of the coupled tuning and standard resistive cir-
cuit systems for piezoelectric energy harvesters using
the extended Hamiltonian principle. They analyzed the
shunt circuit control responses to tune electromechan-
ical piezoelectric vibration power harvesting structures
with proof mass in 2D space. In systems where the
influence of random excitation is considered [9,10], the
nonlinear equations of motion of the electromechanical
system are also in discrete form and describe the sys-
tem displacement in the xy plane. In the paper [11],
the bistable microelectromechanical system was devel-
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oped using a classical Newton approach. A nonlinear
model was prepared with a classical spring damper sys-
tem. Non-linearity was included by an additive nonlin-
ear term described by a bistable double well potential
energy function. Bistable systems of energy harvesting
are useful for optimal electrical power production. In
the paper [12], the authors presented such a system and
discussed it including a bistable potential part in the
differential equation of motion in 2D space. In the other
paper [13], the authors obtained an analytical model of
electromechanical systems by employing the Lagrange’s
equations. The model was analyzed also is 2D space.
The first approaches to the above mathematical mod-
eling were based on systems with linear resonators and
piezoelectric (or electromagnetic) transducers [1,3,14].
Unfortunately, linear devices have an insufficient perfor-
mance in the presence of variable (amplitude and fre-
quency) vibration sources. The recent development on
harvesters with nonlinear resonators showed new fea-
tures for more efficient performance. They are charac-
terized by broader frequency bands because of some
additional solutions in nonlinear systems and conse-
quently additional resonances. The frequency band is
also broadened due to the inclination of the amplitude–
frequency resonance curve [4,15]. The previous studies
[16–20] investigated a system with a vertical piezoelec-
tric planar beam. The beam was fixed at the bottom
to a frame excited periodically or stochastically. For a
large enough tip mass, nonlinear behavior was induced
by gravity acting on it. In that case, the beam was
clamped at the bottom end to the moving frame and
its motion was limited to the plane spanned by frame in
vertical direction of excitation. This paper presents the
numerical model of a flexible slender rod clamped at
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the bottom to describe nonlinearities both from a large
deflection of the rod and from coupling of mechanical
and electrical subsystems. Moreover, despite the sys-
tem is excited in one direction and the rod keeps sym-
metry along the vertical axis, its responses are demon-
strated in 3D space. In contrast to previous considera-
tions, the motion of the propose system includes rota-
tion along the length of the rod which describes an addi-
tional degree of freedom. In the literature are not found
mathematical models for such energy harvesting anal-
ysis which include all aspects presented in this paper.

2 Formulation of the problem

This section discussed the Lagrange approach to derive
the differential equations of the 3D motion in the case
of the flexible slender rod clamp. The assumed length
of the rod is much greater than its diameter. Hence,
the large deformations lead to geometric non-linearities
because of curvature. It creates displacement–strain
nonlinear relations. According to [21], the analyzed
model of the rod is assumed to be a nonlinear elas-
tic structure because its structure undergoes large dis-
placement but insignificant strains occur. In this paper,
the rod is modeled using the Euler–Bernoulli beam the-
ory and the effects of shear deformation is neglected.
This simplification is important for the slender rod
because it allows a differential rod element to be con-
sidered as a rigid body. In the equations of motion,
there are 6 degrees of freedom, three translational and
three rotational. Moreover, it is easy to determine the
displacement of any point of the rod, while the defor-
mation of the neutral axis is known [22]. The slender
rod is assumed to be an in-extensionality constraint,
thus the number of independent variables is reduced to
three. There are two transverse displacements denoted
as v, w along the y and z directions and one rotational
displacement φ around the x axis. The model of the ver-
tical slender rod with a tip mass is presented in Fig. 1.
The kinematic excitation is realized by the harmonic
function ye = Q cos(2πfet) in one horizontal direction
y. The piezoelectric patches are connected to the rod
surface parallel to the xz plane.

The Lagrange method is applied to derive the equa-
tions of motion.

d
dt

(∂L

∂q̇

)
− ∂L

∂q
= 0, (1)

where L = T − Π + We is the Lagrangian, and q̇, q are
generalized variables of velocities and displacements,
respectively.

In the Lagrangian, the kinetic energies T = T1+T2+
TM are:

T1 =
1

2
ρA

∫ L

0

(
u̇(s, t)2 +

(
v̇(s, t) + ẏe(t)

)2
+ ẇ(s, t)2

)
ds,

T2 =
1

2
ρ

∫ L

0

(
Iξωξ(s, t)

2 + Iηωη(s, t)
2 + Iζωζ(s, t)

2

)
ds,

Fig. 1 Scheme of the horizontally excited rod with the tip
mass M

TM =
1

2
M

(
u̇(t)2 +

(
v̇(t) + ẏe(t)

)2
+ ẇ(t)2

)
, (2)

where T1 and T2 correspond to the translational and
rotational energies of the rod, respectively, but TM cor-
responds to the translational energy of the tip mass.
Note that the rotational energy of the tip is neglected
due to the meaningless tip mass dimensions.

The potential energies Π = Π1 + Π2 of the rod are:

Π1 =
1
2

∫ L

0

(
G(Iη + Iζ)κξ(s, t)2 + EIηκη(s, t)2

+ EIζκζ(s, t)2
)

ds,

Π2 = ρAg

∫ L

0

u(s, t)ds + Mgu(t)

(3)

where Π1 corresponds to the elastic strain energy of the
rod and Π2 is the gravity term of potential energy. The
constants G and E in Eqs. (2) and (3) are the shear and
Young’s moduli of the rod. The area moments of inertia
Iξ, Iη, Iζ are represented as

Iξ =
∫ R

0

r2dA =
πd4

32
, and Iη = Iζ =

1
2
Iξ. (4)
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The angular velocities around the corresponding axes
ξ, η and ζ are defined as

ωξ(s, t) = φ̇(s, t) + v̇′(s, t)w′(s, t)

ωη(s, t) = −ẇ′(s, t) − 1
2
(
w′(s, t)

)2
ẇ′(s, t)

ωζ(s, t) = v̇′(s, t) +
1
2
(v′(s, t))2v̇′(s, t)

+
1
2
v̇′(s, t)

(
w′(s, t)

)2

+v′(s, t)w′(s, t)ẇ′(s, t). (5)

The curvature components can also be obtained using
the definition of curvatures [21]:

κξ(s, t) =φ′(s, t) + w′(s, t)v′′(s, t)

κη(s, t) =φ(s, t)v′′(s, t) − w′′(s, t) +
1
2
(φ(s, t))2w′′(s, t)

− 1
2
(w′(s, t))2w′′(s, t)

κζ(s, t) =v′′(s, t) − 1
2
(φ(s, t))2v′′(s, t)

+
1
2
(v′(s, t))2v′′(s, t)

+ φ(s, t)w′′(s, t) + v′(s, t)w′(s, t)w′′(s, t).
(6)

The work executed by the piezoelectric patches We in
moving and extracting the electrical charge is defined
as [17,23]:

We =
(

D1v(t) +
1
3
D2v(t)3

)
U(t), (7)

where D1 and D2 are the electromechanical constants
that correspond to the linear and nonlinear terms [17]:

D1 = e31bp(hp + hb)
∫ Lp

0

f ′′
ζ (s)ds

= e31bp(hp + hb)f ′
ζ(Lp) (8)

D2 =
3e31bp(hp + hb)

2 × 106

∫ Lp

0

f ′′
ζ (s)f ′

ζ(s)
2ds

=
e31bp(hp + hb)

2 × 106
f ′

ζ(Lp)3. (9)

The piezoelectric patches are considered as a capacitor,
and on their electrical side the charge is produced by
D1v + D2v

3 [17].
Introducing Eqs. (2), (3) and (7) to the Lagrangian

Eq. (1) and according to the derivations, the equations
of motion are obtained and formulated in Eqs. (10)–
(12). The equation of the first degree of freedom in the
exciting direction is as follows:

v̈(M + ρANy1 + ρIζ(w2N8 + N4)

+v2(ρANy3 + MN2
y4M + ρIζNy9)

+w2ρIξN8) + v̇(c1 + 2wẇρ(Iζ + Iξ)N8)

+v(ρAN5(ẇ + wẅ) + 2w2DζN13

+φ2(Dη − Dζ)Ny14

−g(ρANy3a + MNy4M ) + DζNy6 + w2DξNyz7

+Mẇ2Ny4MNz4M + wẅMNy4MNz4M

+ρIζ(ẇ2 + wẅ)N8) = −((M + ρANy2)ÿe

+vv̇2(ρANy3 + MN2
y4M + ρIζNy9) + ẇφ̇ρIξN10

+ẇφ̈ρIξN10 − U(D1 + v2D2)

+wφ(N11(Dζ − Dη) + DξN12) + 2v3DζNy7).
(10)

The equation of the second degree of freedom which is
perpendicular to the exciting direction takes the form:

ẅ(M + ρANz1 + ρIηNz4 + w2(ρANz3

+MN2
z4M + ρIηNz9))

+ẇc2 + w(ρAN5(v̇
2 + v̈v) + v2(2DζN13 + DξNyz7)

+φ2(Dη − Dζ)Ny14 − g(ρANz3a + MNz4M )

+M(v̇2 + v̈v)Ny4MNz4M + DηNz6

+ρ(Iζ v̈v − Iξv̇
2)N8)

= −(vφ((Dζ − Dη)N11) + DξN12 + 2w3DηNz7

−v̇φ̇ρIξN10wẇ2(ρANz3 + MN2
z4M + ρIηNz9)).

(11)

Finally, the equation of the third degree of freedom with
rotation around the x axis is as follows:

φ̈ρIξNξ1 + φ̇c3 + φ(v2(Dη − Dζ)Ny14

−w2(Dη − Dζ)Nz14 + DξNξ4)
= −(vw((Dζ − Dη)N11 + DξN12)

+ρIξ(v̈w + v̇ẇ)N10) (12)

The constants Ni in the equations of motion are calcu-
lated from integers as below:

Nξ1 =

∫ L

0

fξ(s)
2ds, Nξ4 =

∫ L

0

f ′
ξ(s)

2ds,

Ny1 =

∫ L

0

fη(s)
2ds, Ny2 =

∫ L

0

fη(s)ds,

Nz1 =

∫ L

0

fζ(s)
2ds,

Ny3 =

∫ L

0

( ∫ s

0

f ′
η(s)

2ds
)2

ds,

Ny3a =

∫ L

0

∫ s

0

f ′
η(s)

2dsds,

Nz3 =

∫ L

0

( ∫ s

0

f ′
ζ(s)

2ds
)2

ds,

Nz3a =

∫ L

0

∫ s

0

f ′
ζ(s)

2dsds,

Ny4 =

∫ L

0

f ′
η(s)

2ds, Ny4M =

∫ LM

0

f ′
η(s)

2ds,

123



3584 Eur. Phys. J. Spec. Top. (2021) 230:3581–3590

Nz4 =

∫ L

0

f ′
ζ(s)

2ds, Nz4M =

∫ LM

0

f ′
ζ(s)

2ds,

N5 =

∫ L

0

( ∫ s

0

f ′
η(s)

2ds

∫ s

0

f ′
ζ(s)

2ds

)
ds,

Ny6 =

∫ L

0

f ′′
η (s)

2ds, Ny7 =

∫ L

0

f ′′
η (s)

2f ′
η(s)

2ds,

Nz6 =

∫ L

0

f ′′
ζ (s)

2ds, Nz7 =

∫ L

0

f ′′
ζ (s)

2f ′
ζ(s)

2ds,

Nyz7 =

∫ L

0

f ′′
η (s)

2f ′
ζ(s)

2ds, N8 =

∫ L

0

f ′
η(s)

2f ′
ζ(s)

2ds,

Ny9 =

∫ L

0

f ′
η(s)

4ds, N10 =

∫ L

0

fξ(s)f
′
η(s)f

′
ζ(s)ds,

Nz9 =

∫ L

0

f ′
ζ(s)

4ds,

N11 =

∫ L

0

fξ(s)f
′′
η (s)f

′′
ζ (s)ds,

N12 =

∫ L

0

f ′
ξ(s)f

′′
η (s)f

′
ζ(s)ds,

N13 =

∫ L

0

f ′
η(s)f

′
ζ(s)f

′′
η (s)f

′′
ζ (s)ds,

Ny14 =

∫ L

0

f ′
ξ(s)

2f ′′
η (s)

2ds,

Nz14 =

∫ L

0

f ′
ξ(s)

2f ′′
ζ (s)

2ds. (13)

These constants directly depend on the shape functions
fξ, fη and fζ given in Eq. (14), which describe the mode
shapes of the rod at resonance zones.

fξ = sin
(
λξ

s

L

)
,

fi = cosh
(
λi

s

L

) − cos
(
λi

s

L

)

+Γi

(
sinh

(
λi

s

L

) − sin
(
λi

s

L

))

(14)

where

Γi = −
sinhλi − sinλi + λi

M
ρAL

(
cosh λi − cos λi

)

cosh λi + cos λi + λi
M

ρAL

(
sinh λi − sin λi

) .

(15)
In this paper, the functions around the axes η and ζ are
simultaneously assumed the same for the ith mode fη =
fζ ≡ fi. The successive values of λi that correspond to
the modes of the rod are presented in Table 1.

Table 1 Mode shape constant of λi

M = 0.0 kg M = 0.1 kg

λ1 1.87510 1.24287

λ2 4.69409 4.02934

λξ π/2 π/2

Figure 2 presents the normalized shape functions
given in Eq. (14). In the case of the twisting mode
shape, the tip mass does not influence their functions,
(the tip mass is considered as dimensionless). Although
the tip mass slightly influences the first bending mode
shape, this influence on the second mode shape is
clearly visible (Fig. 2).

The last equation that corresponds to the electric
subsystem is:

U̇Cp +
U

R
+ v̇

(
D1 + D2v

2
)

= 0, (16)

where R is the load resistance, Cp is the capacitance of
the piezoelectric patch and U is the voltage on the load
resistor connected to the piezoelectric patches. The rod
is equipped with the parallelly connected piezoelectric
patches. The mechanical and electrical subsystems are
coupled by the electromechanical constants D1 and D2

(see Table 2).
Based on the simulated voltage U , the averaged

power scavenged between the times t1 and t2 is obtained
from:

P =
1

t2 − t1

∫ t2

t1

U(t)2

R
dt (17)

where t2 − t1 = Δt is a number of each simulation time
period T .

3 Results and discussion

Section 3 presents the results of the model simulation.
The analysis includes the system responses of a simple
rod and a rod with an attached tip mass to increase
bending moments. The weight of the tip mass M is
comparable to the rod mass m (M = 0.1 kg and m =
0.098 kg). All simulations are provided for the system
parameters given in Table 2.

The characteristics reflect the rod behavior of the
first two transverse mode shapes of vibration. Fig-
ure 3a, b present the results of the amplitude responses
Aout and root-mean-square Prms achieved by the system
vibrating at the first resonance zone for both cases, i.e.
without the tip mass (red–blue) and with it (green–
black), respectively. Note that the large deflection vis-
ible in Figs. 3 and 4 correspond to the buckle shape
of the rod. The excitation corresponds to 0.2 g. The
implemented tip mass caused the natural frequency to
decrease from 2.8 to 1.2 Hz and the output amplitude of
the end rod simultaneously increased almost four times.
It generated the seven time increase in the output power
which charged the piezoelectric element (Fig. 3b). The
first resonance frequency of the rod with the attached
tip mass is 5% higher than the frequency estimated by
the analytical methods of the linear terms of Eq. (10).
In the case without the tip mass, the simulated and
analytical natural frequencies are consistent (Fig. 3a, b
green–black characteristics).
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(a) (b)

Fig. 2 The mode shapes of the first (a) and the second resonance (b) for the simple rod and the rod with the tip mass
M

Table 2 The mechanical and electrical parameters of the system

Symbol and value Description

l = 1000 mm Length of the rod

d = 4 mm Diameter of the rod

A = 12.57 mm2 Rod area of transverse

ρ = 78 × 10−7 kg/mm3 Density of the rod mass

E = 2.10 × 105 MPa Young modulus of the rod material

G = 0.26 × 105 MPa Kirchhoff modulus of the rod material

Iξ = Iη + Iζ = 25.13 mm4 Area moments of inertia

Dξ = 661400 N mm2 The torsional stiffness of the rod

Dη = Dζ = 2,638,900 N mm2 The bending stiffness of the rod

ck = 0.87 N s/m Coefficient of critical damping

c1 = c2 = 0.2ckrit Bending damping coefficients of rod

c3 = 0.1c1 Torsional damping coefficient of rod

Q Excitation of the base

fξ(s), fη(s), fζ(s) The shape mode functions of the excited rod

R = (0.31−3.47) MΩ The load resistance range

D1 = 48.08 × 10−6 N/V Electromechanical coupling constant

D2 = 7.57 × 10−6 N/(V m2) Electromechanical coupling constant

Cp = 38.9 nF Capacitance of the piezoelectric patches

hp = 300 µm Piezoelectric layers thickness

bp = 10 mm Piezoelectric layers width

Lp = 28 mm Active length of piezoelectric layers

d31 = 0.1105 C/m2 piezoelectric constant

The conclusion is that while the system vibrates in
the first mode shape, the nonlinear effect is much more
visible when the tip mass M is attached. The tip mass
effect the splitting curves of amplitude–frequency char-
acteristic (Fig. 4a, b). Following the initial conditions
approach, the excitation frequencies from forward- and
backward- sweeps result in the different shape of the
amplitude–frequency response in the vicinity of the
first resonance zone. In Fig. 4a, the hardening effect
of the output amplitude characteristic is confirmed and
also clear on the output power characteristic (Fig. 4b).

The opposite effect of tip mass is observed for the
second mode shape. Although the natural frequency
also decreases, the output amplitude decreases three
times (Fig. 5a) and the output power fourteen times
(Fig. 5b). This means that energy harvesting efficiency
significantly weakens and the nonlinear effect disap-
pears. Reversing the excitation frequency direction does
not affect the shape of the amplitude–frequency curve.
Comparing the results of the first and the second
modes, the attached tip mass enhances the efficiency
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Fig. 3 The system response for the first mode shape of vibration with the attached tip mass (red–blue lines) and without
the tip mass (green–black lines), a the output amplitude v in the excited direction and b root mean square of output power
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Fig. 4 The output amplitude (a) and root mean square of output power (b) at excitation frequency in both sweeps,
forward (red) and backward (blue), respectively
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Fig. 5 The system responses for the second mode shape of vibration with the attached tip mass (red–blue lines) and
without it (green–black lines), a the output amplitude v in the excited direction and b root mean square of the output
power

Table 3 Initial conditions of the system simulation

v (m) v̇ (m/s) w (m) ẇ (m/s) φ (rad) φ̇ (rad/s) U (V)

IC1(red) 0.12 6.09 0.00 0.00 0.00 0.00 −560.26

IC2(blue) −0.28 0.89 0.00 0.00 0.00 0.00 104.55
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(a)
(b)

(c) (d)

(e) (f)

Fig. 6 The trajectories of the tip point of the rod via time
simulation for the first mode shape of vibration for the sim-
ple rod (a) and the one with the tip mass (b). The time
series of the free end of the rod in the excited direction in
the case of the simple rod (c) and the one with the tip mass

(d). The corresponding time series of the free end of the rod
in the perpendicular direction to the excitation of the sim-
ple rod (e) and the one with the tip mass (f). The results
are obtained for two sets of initials conditions (red and blue
lines) according to Table 3

of energy harvesting in the first case and weakens it in
the second one.

To illustrate the influence of the attached tip mass on
the dynamics of the system at consecutive resonances,
the trajectory of the free end rod for the chosen ini-
tial conditions are plotted. The system operates under
seven initial conditions: v, w, φ, their time derivatives
and also the initial voltage of the piezoelement. They
are chosen to emphasize the non-linear nature of the
system. Their values are listed in Table 3. In Fig. 6a, b,
the trajectories of the first resonance are presented for

simple rod and with the attached tip mass, respectively.
The system response for both initial conditions is plot-
ted by red and blue lines. The next Fig. 6c–f show the
time histories of the displacements v and w to better
visualize the system behavior. It is clear that the case
of the dynamic responses of the simple rod are conver-
gent for both initial conditions (Fig. 6c–e), while the
responses of the rod with tip mass significantly vary,
depending on the initial conditions. Such behavior per-
sists for more than a half time of the simulation and,
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(a) (b)

(c) (d)

(e) (f)

Fig. 7 The trajectories of the tip point of the rod via time
simulation for the second mode shape of vibration for the
simple rod (a) and the one with the tip mass (b). The time
series of the free end of the rod in the excited direction in
the case of the simple rod (c) and the one with the tip mass

(d). The corresponding time series of the free end of the rod
in the perpendicular direction to the excitation of the sim-
ple rod (e) and the one with the tip mass (f). The results
are obtained for two sets of initials conditions (red and blue
lines) according to Table 3

finally, the v displacement converges, but the w visibly
diverges (Fig. 6d, f).

The results of the second resonance are shown in
Fig. 7a–f. The solutions of the v displacement for both
initial conditions are similar in this case (Fig. 7c, d)
but the w displacement significant changes during the
transient time (Fig. 7e, f).

Also, a tiny perturbation in the angle revolution of
the rod with the tip mass (Fig. 8b) is visible, while for
the simple rod no rotations occur (Fig. 8a). It means

that the influence of the tip mass turned out to be
important.

Figures 9 and 10 depict the phase portraits for the
steady state solution of the v direction. For both the
simple rod and with the tip mass, the solutions reflect
the harmonic system responses for the first and second
resonance. The regular behavior is also confirmed by
Poincare maps, shown by black dots in both Figs. 9
and 10 for all discussed cases.
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(a) (b)

Fig. 8 Angle trajectory of the tip point of the rod via time simulation for second mode shape of vibration for the simple
rod (a) and with the tip mass (b)

(a) (b)

Fig. 9 Phase portraits of the solutions for the first mode shape of vibration for the simple rod at the excitation frequency
fe = 2.84 Hz (a) and the rod with the tip mass at the excitation frequency fe = 1.22 Hz (b). The black points correspond
to the Poincare map

(a) (b)

Fig. 10 Phase portraits of the solutions for the second mode shape of vibration for the simple rod at excitation frequency
fe = 18.14 Hz (a) and the rod with the tip mass at the excitation frequency fe = 13.24 Hz (b). The black points correspond
to the Poincare map
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4 Conclusions

The paper presents the analytical model of the rod with
the attached tip mass and the piezoelectric transducer.
Following the concept of the extension of degree-of-
freedom, the out-of-plane, (the xy plane Fig. 1) motion
of the model was considered. Despite the excitation
was in the one direction only, the out-of-plane motion
could be induced by selection proper initial conditions.
Note that the model includes the geometric nonlinear-
ities resulting from deflections shape of the rod and
the final splitting of equilibria (buckling) and the addi-
tional nonlinearities resulting from electro-mechanical
coupling with the horizontal displacement of the tip
mass. The influence of the tip mass on the system
dynamics has been studied. It has been confirmed that
the tip mass leads to the significant enhancement of the
nonlinear effects observed in the dynamical response
of the structure. As expected, the rod without the tip
mass reaches smaller vibration amplitudes and behaves
practically linearly. Consequently, its response does not
depend on the initial conditions and out-of-plane vibra-
tions response of the system without the tip mass were
not observed. Attaching the tip mass to the rod sys-
tem and following proper initial conditions, the ten-
dency to out-of-plane responses is revealed. Although
the tip mass decreases the first and second natural fre-
quencies of the system response, a significant increase
in the vibration amplitude is observed at the first res-
onance zone. Simultaneously, in the second resonance
area vibration amplitude significantly decreases, com-
paring to the system without the tip mass. Presence of
the tip mass changes the effective stiffness of the sys-
tem and favors the first mode solution with respect to
large amplitudes. Additionally, the tip mass leads to
a more complex transient response of the system (3D
like response), especially visible for the second vibration
mode.
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