Skip to main content
Log in

Deep learning in astronomy: a tutorial perspective

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Astronomy is a branch of science that covers the study and analysis of all extraterrestrial objects and their phenomena. The study brings together the aspects of mathematics, physics, and chemistry to elucidate the origin, evolution, and functions of the Universe and the celestial bodies contained within it. It is a highly complex and challenging task to study and analyze astrophysical phenomena in real-life scenarios by human beings. We need some systems and approaches as our helping hands, that should work instinctively as per the requirements, such as machines. However, machine demands multifaceted information-rich data sets and their processes to work as per the requirement. This aspiration is eventually fulfilled with the advancement of technology, and machine-based analysis of the plethora of available data sets changed our understanding of the Universe and astronomical discoveries. It led to a modern exploring environment that helps to understand observational astronomy (OA) better. The advanced approach of OA has become virtual day by day, which requires a panchromatic approach to the Universe for uncovering more precise and comprehensive physical images. These aspects make us realize that astronomical phenomena’ investigation is mostly data-dependent and necessitates a thorough understanding of complex data analysis and visualization methodologies. For improved analysis of the information obtained from the ancient stages of astronomical research—particularly the observed phenomena; mostly mathematical and statistical techniques were being used. Eventually, modern data analysis techniques played a role in analyzing these massive data and became the essential components of the era of the virtual observatory (VO). At present, the size and analysis of these data sets with complexities are at the challenging stage for VO and the bottleneck for major scientific and technology. Such scenarios of model-driven data analysis paradigm are experiencing a valuable companion of data-driven science for extracting the hidden and novel information from the data sets. A technology-enabled solution is the need of the present scenario in sizeable astronomical data analysis. In this regard, recently, the popularity of ML models is increasing very rapidly within the astronomical domain because of their ability to provide handy solutions. The present tutorial summarizes various aspects of ML that could rightly offer appreciable information and answers to astronomical phenomena. We have also aimed to accommodate different learning aspects of ML and deep learning (DL), including selecting, extracting, and preprocessing the input information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.L. Starck, F. Murtagh, Astronomical image and data analysis (Astronomy and Astrophysics Library) (Springer-Verlag, Berlin, Heidelberg, 2006)

    Google Scholar 

  2. S. Chandra, M.K. Sharma, A Textbook of Astronomy and Astrophysics (Dreamtech Press, 2019)

  3. A. Armitage, Copernicus, the founder of modern astronomy (Dorset Press, New York, 1990)

  4. J.P. Long, R.S.D. Souza, “Statistical methods in astronomy,” https://arxiv.org/pdf/1707.05834.pdf, pp. 1–9, (2017)

  5. C.J. Fluke, S.E. Hegarty, C.O.M. MacMahon, Understanding the human in the design of cyber-human discovery systems for data-driven astronomy. Astronomy Comput. 33, 100423 (2020)

    Google Scholar 

  6. K.D. Borne, “Scientific data mining in astronomy,” https://arxiv.org/pdf/0911.0505.pdf, (2009)

  7. C.J. Lintott, K. Schawinski, A. Slosar, K. Land, S. Bamford, D. Thomas, M.J. Raddick, R.C. Nichol, A. Szalay, D. Andreescu, P. Murray, J. Vandenberg, Galaxy zoo: morphologies derived from visual inspection of galaxies from the sloan digital sky survey. Mon. Not. R. Astron. Soc. 389, 1179–1189 (2008)

    ADS  Google Scholar 

  8. K. Edwards, M.M. Gaber, Astronomy and big data (Springer International Publishing, Switzerland., 2014)

    Google Scholar 

  9. Y. Zhang, Y. Zhao, Astronomy in the big data era. Data Sci. J. 14, 1–9 (2015)

    Google Scholar 

  10. J. Dean, Big data, data mining, and machine learning: value creation for business leaders and practitioners, 1st edn. (Wiley, Hoboken, 2014)

    Google Scholar 

  11. L. Wang, C.A. Alexander, Machine learning in big data. Int. J. Math. Eng. Manag. Sci. 1, 52–61 (2016)

    Google Scholar 

  12. A.E. Hassanien, A. Darwish, Machine learning and big data analytics paradigms: analysis, applications and challenges, 1st edn. (Springer, Berlin, 2021)

    Google Scholar 

  13. U.N. Dulhare, K. Ahmad, K.A.B. Ahmad, Machine Learning and Big Data: Concepts, Algorithms, Tools and Applications, 1st edn. (Wiley, Hoboken, 2020)

    Google Scholar 

  14. L. Zhou, S. Pan, J. Wang, A.V. Vasilakosb, Machine learning on big data: opportunities and challenges. Neurocomputing 237, 350–361 (2017)

    Google Scholar 

  15. X.-W. Chen, X. Lin, Big data deep learning: challenges and perspectives. IEEE Access 2, 514–525 (2014)

    Google Scholar 

  16. M.M. Najafabadi, F. Villanustre, T.M. Khoshgoftaar, N. Seliya, R. Wald, E. Muharemagic, Deep learning applications and challenges in big data analytics. J. Big Data 2, 1–21 (2015)

    Google Scholar 

  17. B. Jan, H. Farman, M. Khan, M. Imran, I.U. Islam, A. Ahmad, S. Ali, G. Jeon, Deep learning in big data analytics: a comparative study. Comput. Electr. Eng. 75, 275–287 (2019)

    Google Scholar 

  18. P .H. Barchi, R .R. de Carvalho, R .R. Rosa, R .A. Sautter, M .S. Santos, B .A .D. Marques, E. Clua, T .S. Goncalves, C. de Sa Freitas, T .C. Moura, Machine and deep learning applied to galaxy morphology: a comparative study. Astron. Comput. 30, 100334 (2020)

    Google Scholar 

  19. Y. Bengio, A. Courville, P. Vincent, Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013)

    Google Scholar 

  20. G.E. Hinton, S. Osindero, Y.-W. Teh, A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, “Greedy layer-wise training of deep network,” in Advances in Neural Information Processing Systems, pp. 4–7 (2006)

  22. H. Larochelle, Y. Bengio, J. Louradour, P. Lamblin, “Exploring strategies for training deep neural networks,” The Journal of Machine Learning Research, pp. 1–40, (2009)

  23. R. Salakhutdinov, G. Hinton, “Deep boltzmann machines,” in International Conference on, Artificial Intelligence and Statistics, pp. 448–455 (2009)

  24. I.J. Goodfellow, Q.V. Le, A.M. Saxe, H. Lee, A.Y. Ng, “Measuring invariances in deep networks,” in Advances in Neural Information Processing Systems, pp. 1–9 (2009)

  25. M. Capaccioli, E.V. Held, H. Lorenz, G.M. Richter, R. Ziener, Application of an adaptive filtering technique to surface photometry of galaxies. i. the method tested on ngc 3379*). Astronomische Nachrichten 309, 69–80 (1988)

    ADS  Google Scholar 

  26. G.M. Richter, P. Bohm, H. Lorenz, A. Priebe, M. Capaccioli, Adaptive filtering in astronomical image processing. Astronomische Nachrichten 312, 346–349 (1991)

    MATH  ADS  Google Scholar 

  27. L.S. Slavcheva-Mihova, B.M. Mihov, G.T. Petrov, Adaptive Filter Applications in Surface Photometry of Galaxies, In. virtual observatory: plate content digitization, archive mining and imaga sequence processing ed. Heron Press,Sofia, (2006)

  28. A. Kunder, G. Kordopatis, M. Steinmetz, T. Zwitter, P.J. McMillan, L. Casagrande, H. Enke, J. Wojno, M. Valentini, C. Chiappini, G. Matijevic, A. Siviero, P. de Laverny, A. RecioBlanco, A. Bijaoui, R.F.G. Wyse, J. Binney, E.K. Grebel, A. Helmi, P. Jofre, T. Antoja, G. Gilmore, A. Siebert, B. Famaey, O. Bienayme, B.K. Gibson, K.C. Freeman, J.F. Navarro, U. Munari, G. Seabroke, B. Anguiano, M. Zerjal, I. Minchev, W. Reid, J. Bland-Hawthorn, J. Kos, S. Sharma, F. Watson, Q.A. Parker, R.D. Scholz, D. Burton, P. Cass, M. Hartley, K. Fiegert, M. Stupar, A. Ritter, K. Hawkins, O. Gerhard, W.J. Chaplin, G.R. Davies, Y.P. Elsworth, M.N. Lund, A. Miglio, B. Mosse, The radial velocity experiment (rave): fifth data release. Astron. J. 153, 1–30 (2017)

    ADS  Google Scholar 

  29. K. Bundy, M.A. Bershady, D.R. Law, R. Yan, N. Drory, N. MacDonald, D.A. Wake, B. Cherinka, J.R. Sanchez-Gallego, A.M. Weijmans, D. Thomas, C. Tremonti, K. Masters, L. Coccato, A.M. Diamond-Stanic, A. Aragon-Salamanca, V. Avila-Reese, C. Badenes, J. Falcon-Barroso, F. Belfiore, D. Bizyaev, G.A. Blanc, J. Bland-Hawthorn, M.R. Blanton, J.R. Brownstein, N. Byler, M. Cappellari, C. Conroy, A.A. Dutton, E. Emsellem, J. Ethering-ton, P.M. Frinchaboy, H. Fu, J.E. Gunn, P. Harding, E.J. Johnston, G. Kauffmann, K. Kinemuchi, M.A. Klaene, J.H. Knapen, A. Leauthaud, C. Li, L. Lin, R. Maiolino, V. Malanushenko, E. Malanushenko, S. Mao, C. Maraston, R.M. McDermid, M.R. Merri-field, R.C. Nichol, D. Oravetz, K. Pan, J.K. Parejko, S.F. Sanchez, D. Schlegel, A. Simmons, O. Steele, M. Steinmetz, K. Thanjavur, B.A. Thompson, J.L. Tinker, R.C.E. van den Bosch, K.B. Westfall, D. Wilkinson, S. Wright, T. Xiao, K. Zhang, Overview of the sdss-iv manga survey: mapping nearby galaxies at apache point observatory. Astron. J. 798, 1–24 (2015)

    Google Scholar 

  30. A. Udalski, M. Szymanski, I. Soszynski, R. Poleski, The optical gravitational lensing experiment. final reductions of the ogle-iii data. Acta Astronomica 58, 69–87 (2008)

    ADS  Google Scholar 

  31. “Astronomical data sources on the web,” http://tdc-www.harvard.edu/astro.data.html

  32. G. Torres, J. Andersen, A. Gimenez, Accurate masses and radii of normal stars, modern results and applications. Astron. Astrophys. Rev. 18, 67–126 (2010)

    ADS  Google Scholar 

  33. Z. Chen, L. Ma, L. Xu et al., Imaging and representation learning of solar radio spectrums for classification. Multimed. Tools Appl. 75, 2859–2875 (2016)

    Google Scholar 

  34. Y. Chena, R. Kongb, L. Kongb, “Applications of artificial intelligence in astronomical big data,” Big Data in Astronomy, pp. 347–375, (2020)

  35. L.D. Buisson, N. Sivanandam, B. Bassett et al., Machine learning classification of sdss transient survey images. Mon. Not. R. Astron. Soc. 454, 2026–2038 (2015)

    ADS  Google Scholar 

  36. E. Ishida, Machine learning and the future of supernova cosmology. Nat. Astron. 3, 680–682 (2019)

    ADS  Google Scholar 

  37. N. Nishizuka, K. Sugiura, Y. Kubo et al., Solar flare prediction model with three machine-learning algorithms using ultraviolet brightening and vector magnetograms. Astrophys. J. 835(2017)

  38. M. Ntampaka, H. Trac, D. Sutherland et al., A machine learning approach for dynamical mass measurements of galaxy clusters. Astrophys. J. 803(2015)

  39. T. Devine, K. Goseva-Popstojanova, M. Mclaughlin, Detection of dispersed radio pulses: a machine learning approach to candidate identification and classification. Mon. Not. R. Astron. Soc. 459, 1519–1532 (2016)

    ADS  Google Scholar 

  40. S. Meingast, M. Lombardi, J. Alves, Estimating extinction using unsupervised machine learning. Astron. Astrophys. 601(2017)

  41. C.M. Bishop, Pattern recognition and machine learning (Springer, New York, 2016)

    MATH  Google Scholar 

  42. Z. Ivezic, A.J. Connolly, J.T. VanderPlas, A. GrayS, Statistics, data mining, and machine learning in astronomy (Princeton University Press, Princeton, 2014)

    Google Scholar 

  43. I. Arel, D.C. Rose, T.P. Karnowski, Deep machine learning—a new frontier in artificial intelligence research. IEEE Comput. Intell. Mag. 5, 13–18 (2010)

    Google Scholar 

  44. P.W.D.R. Brett, R.G. West, The automated classification of astronomical light curves using kohonen self-organizing maps. Mon. Not. R. Astron. Soc. 353, 369–376 (2010)

    ADS  Google Scholar 

  45. O. Chapelle, B. Scholkopf, A. Zien, Semi-supervised learning, 1st edn. (The MIT Press, Cambridge, 2010)

    Google Scholar 

  46. J.E.V. Engelen, H.H. Hoos, A survey on semi-supervised learning. Mach. Learn. 109, 373–440 (2020)

    MathSciNet  MATH  Google Scholar 

  47. K. Nigam, A. McCallum, S. Thrun, T. Mitchell, Text classification from labeled and unlabeled documents using EM. Mach. Learn. 39, 103–134 (2000)

    MATH  Google Scholar 

  48. T.S. Guzella, W.M. Caminhas, A review of machine learning approaches to spam filtering. Expert Syst. Appl. 36, 10 206–10 222 (2009)

    Google Scholar 

  49. F. Kane, Building Recommender Systems with Machine Learning and AI:, 1st ed. Sundog Education, (2018)

  50. P. Scheibelhofer, D. Gleispach, G. Hayderer, E. Stadlober, A methodology for predictive maintenance in semiconductor manufacturing. Aust. J. Stat. 41, 161–173 (2012)

    Google Scholar 

  51. Y.E. Mourabit, Y.E. Habouz, H. Zougagh, Y. Wadiai, Predictive system of semiconductor failures based on machine learning approach. Int. J. Adv. Comput. Sci. Appl. 11, 199–203 (2020)

    Google Scholar 

  52. Z.M. Cinar, A.A. Nuhu, Q. Zeeshan, O. Korhan, M. Asmael, B. Safaei, Machine learning in predictive maintenance towards sustainable smart manufacturing in industry. Sustainability 12, 1–42 (2020)

    Google Scholar 

  53. M.L. de Prado, Advances in financial machine learning (Wiley, Hoboken, 2018)

    Google Scholar 

  54. S. Thomas, M. Goel, D. Agrawal, A framework for analyzing financial behavior using machine learning classification of personality through handwriting analysis. J. Behav. Exp. Finance 26, 100315 (2020)

    Google Scholar 

  55. N. Sebe, I. Cohen, A. Garg, T.S. Huang, Machine learning in computer vision (Springer Science and Business Media, Netherlands, 2005)

  56. R. Cipolla, S. Battiato, G.M. Farinella, Machine learning for computer vision (Springer-Verlag, Berlin Heidelberg, 2012)

    MATH  Google Scholar 

  57. A.I. Khan, S. Al-Habsi, Machine learning in computer vision. Proc. Comput. Sci. 167, 1444–1451 (2020)

    Google Scholar 

  58. Britannica, “Stellar classification,” The Editors of Encyclopaedia, Encyclopedia Britannica, https://www.britannica.com/science/stellar-classification, (2013)

  59. R.K. Gulati, R. Gupta, P. Gothoskar, S. Khobragade, Ultraviolet stellar spectral classification using a multilevel tree neural network. Vistas Astron. 38, 293–298 (1994)

    ADS  Google Scholar 

  60. V. Malyuto, R. Lazauskaite, T. Shvelidze, Simulated quantitative stellar classification at different spectral resolutions. New Astron. 6, 381–392 (2001)

    ADS  Google Scholar 

  61. A. Rodriguez, B. Arcay, C. Dafonte, M. Manteiga, I. Carricajo, Automated knowledge based analysis and classification of stellar spectra using fuzzy reasoning. Expert Syst. Appl. 27, 237–244 (2004)

    Google Scholar 

  62. Z. Liu, L. Song, W. Zhao, Classification of large-scale stellar spectra based on the non-linearly assembling learning machine. Mon. Notices R. Astron. Soc. 455, 4289–4294 (2015)

    ADS  Google Scholar 

  63. Y.L. Chiu, C.T. Ho, D.W. Wang, S.P. Lai, Searching for young stellar objects through seds by machine learning. Astron. Comput. 36, 100470 (2021)

    Google Scholar 

  64. Z. Jing-min, M. Chen-ye, W. Lu, D. Li-ting, X .T. ting, A. Lin-pin, Z. Wei-hong, A new stellar spectral feature extraction method based on two-dimensional fourier spectrum image and its application in the stellar spectral classification based on deep network. Chin. Astron. Astrophys. 44, 334–344 (2020)

    ADS  Google Scholar 

  65. C. Du, A. Luo, H. Yang, Adaptive stellar spectral subclass classification based on bayesian svms. New Astron. 51, 51–58 (2017)

    ADS  Google Scholar 

  66. M. Wu, J. Pan, Z. Yi, P. Wei, Rare object search from low s/n stellar spectra in sdss. IEEE Access 8, 66 475–66 488 (2020)

    Google Scholar 

  67. Z. Liu, Stellar spectra classification with twin hypersphere model. New Astron. 88, 101613 (2021)

    Google Scholar 

  68. A. Heck, D. Egret, M. Jaschek, C. Jaschek, in ESA SP-1052, (1984)

  69. A. Hewish, S.J. Bell, J.D.H. Pilkington, P.F. Scott, R.A. Collins, Observation of a rapidly pulsating radio source. Nature 217, 709–713 (1968)

    ADS  Google Scholar 

  70. V.M. Kaspi, M. Kramer, “Radio pulsars: The neutron star population and fundamental physics,” arXiv:1602.07738, pp. 1–45, (2016)

  71. R.J. Lyon, B.W. Stappers, S. Cooper, J.M. Brooke, J.D. Knowles, Fifty years of pulsar candidate selection: from simple filters to a new principled real-time classification approach. Mon. Notices R. Astron. Soc. 459, 1104–1123 (2016)

    ADS  Google Scholar 

  72. C.J. Zhang, Z.H. Shang, W.M. Chen, L. Xie, X.H. Miao, A review of research on pulsar candidate recognition based on machine learning. Proc. Comput. Sci. 166, 534–538 (2020)

    Google Scholar 

  73. S. Bethapudi, S. Desai, Separation of pulsar signals from noise using supervised machine learning algorithms. Astron. Comput. 23, 15–26 (2018)

    ADS  Google Scholar 

  74. R.P. Eatough, N. Molkenthin, M. Kramer, A. Noutsos, M.J. Keith, B.W. Stappers, A.G. Lyne, Selection of radio pulsar candidates using artificial neural networks. Mon. Notices R. Astronomical Soc. 407, 2443–2450 (2010)

    ADS  Google Scholar 

  75. V. Morello, E.D. Barr, M. Bailes, C.M. Flynn, E.F. Keane, W.V. Straten, Spinn: a straightforward machine learning solution to the pulsar candidate selection problem. Mon. Not. R. Astron. Soc. 443, 1651–1662 (2014)

    ADS  Google Scholar 

  76. H. Lin, X. Li, Z. Luo, Pulsars detection by machine learning with very few features. Mon. Not. R. Astron. Soc. 493, 1842–1854 (2020)

    ADS  Google Scholar 

  77. M. Azhari, A. Abarda, A. Alaoui, B. Ettaki, J. Zerouaoui, Detection of pulsar candidates using bagging method. Proc. Comput. Sci. 170, 1096–1101 (2020)

    Google Scholar 

  78. J. de la Calleja, O. Fuentes, “Automated classification of galaxy images,” in International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, (2004)

  79. E. Kuminski, L. Shamir, A hybrid approach to machine learning annotation of large galaxy image databases. Astron. Comput. 25, 257–269 (2018)

    ADS  Google Scholar 

  80. A. Nolte, L. Wang, M. Bilicki, B. Holwerda, M. Biehl, Galaxy classification: a machine learning analysis of gama catalogue data. Neurocomputing 342, 172–190 (2019)

    Google Scholar 

  81. K.M. Hosny, M.A. Elaziz, I.M. Selim, M.M. Darwish, Classification of galaxy color images using quaternion polar complex exponential transform and binary stochastic fractal search. Astron. Comput. 31, 100383 (2020)

    Google Scholar 

  82. M.A. Elaziz, K.M. Hosny, I.M. Selim, Galaxies image classification usingartificial bee colony based onorthogonal gegenbauer moments. Soft Comput. 23, 9573–9583 (2019)

    Google Scholar 

  83. H. Ibrahim, N.S.P. Kong, T.F. Ng, Simple adaptive median filter for the removal of impulse noise from highly corrupted images. IEEE Trans. Consumer Electron. 54, 1920–1927 (2008)

    Google Scholar 

  84. L. Chao, Z. Wen-hui, L. Ji-ming, Study of star/galaxy classification based on the xgboost algorithm. Chin. Astron. Astrophys. 43, 539–548 (2019)

    ADS  Google Scholar 

  85. C. Crawford, “The transient universe,” Lecture by Prof. C. Crawford, https://www.gresham.ac.uk/lectures-and-events/the-transient-universe

  86. S.G. Djorgovski, A.A. Mahabal, C. Donalek, M.J. Graham, A.J. Drake, B. Moghaddam, M. Turmon, “Flashes in a star stream: Automated classification of astronomical transient events,” in IEEE 8th International conference on E-science, pp. 1–8 (2012)

  87. B. Zackay, E.O. Ofek, A. Gal-Yam, Proper image subtraction-optimal transient detection, photometry, and hypothesis testing. Astrophys. J. 830, 1–23 (2016)

    Google Scholar 

  88. A. Mahabal, S.G. Djorgovski, R. Williams, A. Drake, C. Donalek, M. Graham, B. Moghaddam, M. Turmon, J. Jewell, A. Khosla, B. Hensley, “Towards real-time classification of astronomical transients,” https://arxiv.org/abs/0810.4527, (2008)

  89. K. Sooknunan, M. Lochner, B.A. Bassett, H.V. Peiris, R. Fender, A.J. Stewart, M. Pietka, P.A. Woudt, J.D. McEwen, O. Lahav, Classification of multiwavelength transients with machine learning. Mon. Not. R. Astron. Soc. 502, 206–224 (2021)

    ADS  Google Scholar 

  90. B. Sanchez, M .J .D. R, M. Lares, M. Beroiz, J .B. Cabral, S. Gurovich, C. Quinones, R. Artola, C. Colazo, M. Schneiter, C. Girardini, M. Tornatore, J .L .N. Castellon, D .G. Lambas, M .C. Diaz, Machine learning on difference image analysis: a comparison of methods for transient detection. Astron. Comput. 28, 100284 (2019)

    Google Scholar 

  91. A. Rowlinson, A.J. Stewart, J.W. Broderick, J.D. Swinbank, R.A.M.J. Wijers, D. Carbone, Y. Cendes, R. Fender, A.V.D. Horst, G. Molenaar, B. Scheers, T. Staley, S. Farrell, J.M. Griemeier, M. Bell, J. Eisloffel, C.J. Law, J. van Leeuwen, P. Zarka, Identifying transient and variable sources in radio images. Astron. Comput. 27, 111–129 (2019)

    ADS  Google Scholar 

  92. J. Kremer, K. Stensbo-Smidt, F. Gieseke, K.S. Pedersen, C. Igel, Big universe, big data: machine learning and image analysis for astronomy. IEEE Intell. Syst. 32, 16–22 (2017)

    Google Scholar 

  93. H. Brink, J.W. Richards, D. Poznanski, J.S. Bloom, J. Rice, S. Negahban, M. Wainwright, Using machine learning for discovery in synoptic survey imaging data. Mon. Not. R. Astron. Soc. 435, 1047–1060 (2013)

    ADS  Google Scholar 

  94. S. Luo, A.P. Leung, C.Y. Hui, K.L. Li, An investigation on the factors affecting machine learning classifications in gamma-ray astronomy. Mon. Not. R. Astron. Soc. 492, 5377–5390 (2019)

    ADS  Google Scholar 

  95. P.R. McWhirter, A. Hussain, D. Al-Jumeily, I.A. Steele, M.M.B.R. Vellasco, Classifying periodic astrophysical phenomena from non-survey optimized variable-cadence observational data. Expert Syst. Appl. 131, 94–115 (2019)

    Google Scholar 

  96. S. Bahaadini, V. Noroozi, N. Rohani, S. Coughlin, M. Zevin, J.R. Smith, V. Kalogera, A. Katsaggelos, Machine learning for gravity spy: Glitch classification and dataset. Inform. Sci. 444, 72–186 (2018)

    MathSciNet  Google Scholar 

  97. S. Long, J. Fu, J. Jian, Z. Fan, Q. Fan, F. Xie, Y. Zhang, J. Ma, Spectroscopy learning: A machine learning method for study diatomic vibrational spectra including dissociation behavior. MethodsX 7, 101127 (2020)

    Google Scholar 

  98. K.L. Wagstaff, B. Tang, D.R. Thompson, S. Khudikyan, J. Wyngaard, A.T. Deller, D. Palaniswamy, S.J. Tingay, R.B. Wayth, “A machine learning classifier for fast radio burst detection at the vlba,” Publications of the Astronomical Society of the Pacific, pp. 1–12, (2016)

  99. F. Ribeiro, A.L.S. Gradvohl, Machine learning techniques applied to solar flares forecasting. Astron. Comput. 35, 100468 (2021)

    Google Scholar 

  100. B. Mu, J.H. Kastner, C.L. Buchanan, “A performance comparison of unsupervised clustering techniques for classification of spitzer space telescope infrared spectra,” in ICIS International congress on imaging science, pp. 310–313 (2006)

  101. I.O. Pascual, J.S. Almeida, A fast version of the k-means classification algorithm for astronomical applications. Astron. Astrophys. 565, 1–4 (2014)

    Google Scholar 

  102. W. Jang, M. Hendry, Cluster analysis of massive datasets in astronomy. Stat. Comput. 17, 253–262 (2007)

    MathSciNet  Google Scholar 

  103. X. Shou-Kun, W. Chao, Z. Li-hua, G. Xin-hua, Dbscan clustering algorithm for the detection of nearbyopen clusters based on gaia-dr2two. Chin. Astron. Astrophys. 43, 225–236 (2009)

    Google Scholar 

  104. S. Chattopadhyay, R. Maitra, Gaussian-mixture-model-based cluster analysis finds five kinds of gamma-ray bursts in the batse catalogue. Mon. Not. R. Astron. Soc. 469, 3374–3389 (2017)

    ADS  Google Scholar 

  105. H.S. Kang, K.S. Mann, M. Kaur, A combinational strategy for clustering of astronomical datasets. Int. J. Res. Eng. Appl. Manag. 4, 336–341 (2018)

    Google Scholar 

  106. Y.C. Kwon, D. Nunley, J.P. Gardner, M. Balazinska, B. Howe, S. Loebman, “Scalable clustering algorithm for n-body simulations in a shared-nothing cluster,” International Conference on Scientific and Statistical Database Management, pp. 132–150, (2010)

  107. M.M. Saeed, Z.A. Aghbari, M. Alsharidah, “Big data clustering techniques based on spark: a literature review,” PeerJ Comput. Sci., pp. 1–28, (2020)

  108. M.S. Shin, S.W. Chang, H. Yi, D.W. Kim, M.J. Kim, Y.I. Byun, Detecting variability in massive astronomical time-series data. iii. variable candidates in the superwasp dr1 found by multiple clustering algorithms and a consensus clustering method. Astron. J 156, 1–21 (2018)

    Google Scholar 

  109. H. Lei, L. Tang, J.R. Iglesias, S. Mukherjee, S. Mohanty, “S-means : Similarity driven clustering and its application in gravitational-wave astronomy data mining,” (2007)

  110. F.I. L.-O. e. a. Rogers, B., “Statistical challenges in modern astronomy,” in Astronomical Society of the Pacific Conference Series, (2007)

  111. S.J. Pan, Q. Yang, A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 1345–1359 (2010)

    Google Scholar 

  112. W.M. Kouw, M. Loog, “A review of domain adaptation without target labels,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1, https://doi.org/10.1109/TPAMI.2019.2945942,2019

  113. C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, C. Liu, “A survey on deep transfer learning,” arXiv:1808.01974, (2018)

  114. F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, Q. He, A comprehensive survey on transfer learning. Proc. IEEE 109, 43–76 (2021)

    Google Scholar 

  115. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436–444 (2015)

    ADS  Google Scholar 

  116. R. Hausen, B.E. Robertson, Morpheus: a deep learning framework for the pixel-level analysis of astronomical image data. Astrophys. J. Suppl. Ser. 248(1), 20 (2020). https://doi.org/10.3847/1538-4365/ab8868. [Online]. Available:

    Article  ADS  Google Scholar 

  117. A. Boucaud, M. Huertas-Company, C. Heneka, E.E.O. Ishida, N. Sedaghat, R.S. de Souza, B. Moews, H. Dole, M. Castellano, E. Merlin, V. Roscani, A. Tramacere, M. Killedar, A.M.M. Trindade, C. for the COIN, “Photometry of high-redshift blended galaxies using deep learning,” Monthly Notices of the Royal Astronomical Society, vol. 491, no. 2, pp. 2481–2495, 12 (2019). [Online]. Available: https://doi.org/10.1093/mnras/stz3056

  118. A. Aniyan, K. Thorat, “Classifying radio galaxies with the convolutional neural network,” The Astrophysical Journal. Supplement Series, vol. 230, (2017)

  119. R.E. Gonzalez, R.P. Munoz, C.A. Hernandez, Galaxy detection and identification using deep learning and data augmentation. Astron. Comput. 25, 103–109 (2018)

    ADS  Google Scholar 

  120. J. Pasquet-Itam, J. Pasquet, Deep learning approach for classifying, detecting and predicting photometric redshifts of quasars in the sloan digital sky survey stripe. Astron. Astrophys 611(2018)

  121. J.P. M.D. Sa, Pattern Recognition: Concepts, Methods, and Applications. Springer-Verlag, germany, (2001)

  122. H. Xin, W. Huaning, X. Long et al., Deep learning based solar flare forecasting model. i. results for line-of-sight magnetograms. Astrophys. J. 856(2018)

  123. S. Chen, L. Xu, L. Ma, et. al., “Convolutional neural network for classification of solar radio spectrum,” in 2017 IEEE international conference on multimedia and expo workshops (ICMEW), IEEE, (2017)

  124. L. Alzubaidi, J. Zhang, A.J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, J. Santamaría, M.A. Fadhel, M. Al-Amidie, L. Farhan, Review of deep learning: concepts, cnn architectures, challenges, applications, future directions. J. Big Data 53, 1–74 (2021)

    Google Scholar 

  125. A. Tarvainen, H. Valpola, “Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results,” in Advances in neural information processing systems, pp. 1195–1204 (2017)

  126. M. Sajjadi, M. Javanmardi, T. Tasdizen, “Regularization with stochastic transformations and perturbations for deep semi-supervised learning,” in Advances in neural information processing systems (NeurIPS), pp. 1163–171 (2016)

  127. A. Oliver, A. Odena, C.A. Raffel, E.D. Cubuk, I. Goodfellow, “Realistic evaluation of deep semi-supervised learning algorithms,” in Advances in neural information processing systems (NeurIPS), pp. 3235–3246 (2018)

  128. D. Lee, “Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks.” in International conference on machine learning (ICML), (2013)

  129. Z. Zhou, J. Shin, L. Zhang, S. Gurudu, M. Gotway, J. Liang, “Fine-tuning convolutional neural networks for biomedical image analysis: Actively and incrementally,” in IEEE conference on computer vision and pattern recognition (CVPR), pp. 4761–4772 (2017)

  130. M. Noroozi, H. Pirsiavash, P. Favaro, “Representation learning by learning to count,” arXiv:1708.06734, (2017)

  131. X. Liu, J.V.D. Weijer, A.D. Bagdanov, Exploiting unlabeled data in cnns by self-supervised learning to rank. IEEE Trans. Pattern Anal. Mach. Intell. 41, 1862–1878 (2019)

    Google Scholar 

  132. Y. Ouali, C. Hudelot, M. Tami, “An overview of deep semi-supervised learning,” arXiv:2006.05278, (2020)

  133. X. Yang, Z. Song, I. King, Z. Xu, “A survey on deep semi-supervised learning,” arXiv:2103.00550, (2021)

  134. Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)

    Google Scholar 

  135. L. Buturovic, D. Miljkovic, “A novel method for classification of tabular data using convolutional neural networks,” https://doi.org/10.1101/2020.05.02.074203, (2020)

  136. A. Sharma, E. Vans, D. Shigemizu, K.A. Boroevich, T. Tsunoda, “Deepinsight: A methodology to transform a non-image data to an image for convolution neural network architecture,” Scientific Reports, vol. 9, (2019). [Online]. Available: https://doi.org/10.1038/s41598-019-47765-6

  137. T.S. Lee, The visual system internal model of the world. Proc. IEEE 103, 1359–1378 (2015)

    Google Scholar 

  138. M. Keith, “The epn database of pulsar profiles,” (1996). [Online]. https://doi.org/10.1038/s41598-019-47765-6

  139. L. Deng, A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPA Trans. Signal Inform. Process. 3, 1–29 (2014)

    Google Scholar 

  140. J. Schmidhuber, Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Google Scholar 

  141. J.R. Quinlan, Induction of decision trees. Mach. Learn. 1, 81–106 (1986)

    Google Scholar 

  142. R.O. Duda, P.E. Hart, D.G. Stork, Pattern classification, 2nd edn. (Wiley Interscience Publications, USA, 2000)

  143. D.E. Rumelhart, J.L. McClelland, Parrallel distributed processing (MIT Press, Cambridge, 1986)

    Google Scholar 

  144. V.N. Vapnik, Statistical learning theory (Wiley, New York, 1998)

    MATH  Google Scholar 

  145. L. Eyer, C. Blake, Automated classification of variable stars for all-sky automated survey 1–2 data. Mon. Not. R. Astron. Soc. 358, 30–38 (2005)

    ADS  Google Scholar 

  146. P. Dubath, L. Rimoldini, M. Suveges, J. Blomme, M. Lopez, L.M. Sarro, J.D. Ridder, J. Cuypers, L. Guy, I. Lecoeur, K. Nienartowicz, A. Jan, M. Beck, N. Mowlavi, P.D. Cat, T. Lebzelter, L. Eyer, Random forest automated supervised classification of hipparcos periodic variable stars. Mon. Not. R. Astron. Soc. 414, 2602–2617 (2011)

    ADS  Google Scholar 

  147. J. Blomme, L .M. Sarro, F .T. ODonovan, J. Debosscher, T. Brown, M. Lopez, P. Dubath, L. Rimoldini, D. Charbonneau, E. Dunham, G. Mandushev, D .R. Ciardi, J .D. Ridder, C. Aerts, Improved methodology for the automated classification of periodic variable stars. Mon. Not. R. Astron. Soc. 418, 96–106 (2011)

    ADS  Google Scholar 

  148. L. Rimoldini, P. Dubath, M. Suveges, M. Lopez, L.M. Sarro, J. Blomme, J.D. Ridder, J. Cuypers, L. Guy, N. Mowlavi, I. Lecoeur-Taïbi, M. Beck, A. Jan, K. Nienartowicz, D. Ordonez-Blanco, T. Lebzelter, L. Eyer, Automated classification of hipparcos unsolved variables. Mon. Not. R. Astron. Soc. 427, 2917–2937 (2012)

    ADS  Google Scholar 

  149. N. Peng, Y. Zhang, Y. Zhao, X bing Wu, Selecting quasar candidates using a support vector machine classification system. Mon. Not. R. Astron. Soc. 425, 2599–2609 (2012)

    ADS  Google Scholar 

  150. D. Tanoglidis, A. Ciprijanovic, A. Drlica-Wagner, Deepshadows: separating low surface brightness galaxies from artifacts using deep learning. Astron. Comput. 35, 100469 (2021)

    Google Scholar 

  151. S. Dieleman, K.W. Willett, J. Dambre, Rotation-invariant convolutionalneural networks for galaxymorphology prediction. Mo. Not. R. Astron. Soc. 450, 1441–1459 (2015)

    ADS  Google Scholar 

  152. A.K. Aniyan, K. Thorat, Classifying radio galaxies with the convolutional neural network. The Astrophysical Journal Supplement Series 230(2017)

  153. B. Becker, M. Vaccari, M. Prescott, T. Grobler, Cnn architecture comparison for radio galaxy classification. Mon. Not. R. Astron. Soc. 503, 1828–1846 (2021)

    ADS  Google Scholar 

  154. W. Wei, A. Khana, E.A. Huerta, X. Huang, M. Tian, Deep learning ensemble for real-time gravitational wave detection of spinning binary black hole mergers. Phys. Lett. B 812, 136029 (2021)

    MathSciNet  Google Scholar 

  155. W. Wei, E.A. Huerta, Gravitational wave denoising of binary black hole mergers with deep learning. Phys. Lett. B 800, 135081 (2020)

    MathSciNet  Google Scholar 

  156. W. Wei, E.A. Huerta, Deep learning for gravitational wave forecasting of neutron star mergers. Phys. Lett. B 816, 136185 (2021)

    MathSciNet  Google Scholar 

  157. N. Perraudin, M. Defferrard, T. Kacprzak, R. Sgier, Deepsphere: Efficient spherical convolutional neural network with healpix sampling for cosmological applications. Astron. Comput. 27, 130–146 (2019)

    ADS  Google Scholar 

  158. H. Tilaver, M. Salti, O. Aydogdu, E.E. Kangal, Deep learning approach to hubble parameter. Comput. Phys. Commun. 261, 107809 (2021)

    MathSciNet  Google Scholar 

  159. A. Ciprijanovic, G.F. Snyder, B. Nord, J.E.G. Peek, Deepmerge: classifying high-redshift merging galaxies with deep neural networks. Astron. Comput. 32, 100390 (2020)

    Google Scholar 

  160. D. Czech, A. Mishra, M. Inggs, A cnn and lstm-based approach to classifying transient radio frequency interference. Astron. Comput. 25, 52–57 (2018)

    ADS  Google Scholar 

  161. G. Cabrera-Vives, I. Reyes, F. Forster, P.A. Estrvez, J.C. Maureira, “Deep-hits: Rotation invariant convolutional neural network for transient detection,” arXiv:1701.00458, (2017)

  162. B. Jiang, D. Wei, J. Liu, S. Wang, L. Cheng, Z. Wang, M. Qu, “Automated classification of massive spectra based on enhanced multi-scale coded convolutional neural network,” Universe, vol. 6, (2020)

Download references

Acknowledgements

The author would like to thank the Editor of the journal and the Associate Editor, and extend their gratitude to the anonymous reviewers for their constructive comments and suggestions to improve the overall quality and presentation of this article.

Author information

Authors and Affiliations

Authors

Contributions

SKM: conception and design of the work, data analysis and interpretation, drafting and organization of the article, critical revision of the article, final approval of the version to be published

GP: drafting and organization of the article, critical revision of the article, final approval of the version to be published.

Corresponding author

Correspondence to Saroj K. Meher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meher, S.K., Panda, G. Deep learning in astronomy: a tutorial perspective. Eur. Phys. J. Spec. Top. 230, 2285–2317 (2021). https://doi.org/10.1140/epjs/s11734-021-00207-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00207-9

Navigation