Skip to main content
Log in

Efficient tampering of a coulomb exploding cluster embedded in a hydrogen shell

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Based on molecular dynamics (MD) simulations, we explore the efficiency of molecular hydrogen as a tamper material in X-ray diffraction imaging of single nanoparticles. An \(\hbox {Ar}_{55}\) cluster serves as a model system for a nanoparticle which is embedded in a hydrogen shell of various sizes. The MD model accounts for the initial photoionization and Auger electron emission of the \(\hbox {Ar}_{55}\) core, the secondary field and impact ionizations in the core and in the tamper shell, and the neutralization of the electron deficiency in the core by the fast migration of electrons from the tamper shell to the core. We find that a low first ionization potential is crucial for a massive electron migration and thus for the efficiency of the tamper material. Accordingly, hydrogen is a much more efficient tamper material than the isoelectronic helium, for which we have performed comparative simulations. To fully exploit the tamper effect of hydrogen, the core must be completely embedded by the tamper shell. In this context, it is encouraging that Kuma et al. (J Phys. Chem. A 115, 7392 (2011) showed that it is possible to coat a sample by hydrogen inside helium nanodroplets. While water with its even lower first ionization potential is the natural tamper material for biological samples, hydrogen could be an alternative in material science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The original simulation data are very voluminous (many gigabytes of binary data) and will not be deposited here but are available from the authors upon request.]

References

  1. I. Barke, H. Hartmann, D. Rupp, L. Flückiger, M. Sauppe, M. Adolph, S. Schorb, C. Bostedt, R. Treusch, C. Peltz et al., The 3d-architecture of individual free silver nanoparticles captured by X-ray scattering. Nat. Commun. 6(1), 1–7 (2015)

    Article  Google Scholar 

  2. L.F. Gomez, K.R. Ferguson, J.P. Cryan, C. Bacellar, R.M.P. Tanyag, C. Jones, S. Schorb, D. Anielski, A. Belkacem, C. Bernando, R. Boll, J. Bozek, S. Carron, G. Chen, T. Delmas, L. Englert, S.W. Epp, B. Erk, L. Foucar, R. Hartmann, A. Hexemer, M. Huth, J. Kwok, S.R. Leone, J.H.S. Ma, F.R.N.C. Maia, E. Malmerberg, S. Marchesini, D.M. Neumark, B. Poon, J. Prell, D. Rolles, B. Rudek, A. Rudenko, M. Seifrid, K.R. Siefermann, F.P. Sturm, M. Swiggers, J. Ullrich, F. Weise, P. Zwart, C. Bostedt, O. Gessner, A.F. Vilesov, Shapes and vorticities of superfluid helium nanodroplets. Science 345(6199), 906–909 (2014)

    Article  ADS  Google Scholar 

  3. J.C. Solem, G.C. Baldwin, Microholography of living organisms. Science 218(4569), 229–235 (1982)

    Article  ADS  Google Scholar 

  4. R. Neutze, R. Wouts, D. Van der Spoel, E. Weckert, J. Hajdu, Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406(6797), 752–757 (2000)

    Article  ADS  Google Scholar 

  5. K. Gaffney, H. Chapman, Imaging atomic structure and dynamics with ultrafast X-ray scattering. Science 316(5830), 1444–1448 (2007)

    Article  ADS  Google Scholar 

  6. H.N. Chapman, A. Barty, M.J. Bogan, S. Boutet, M. Frank, S.P. Hau-Riege, S. Marchesini, B.W. Woods, S. Bajt, W.H. Benner et al., Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nat. Phys. 2(12), 839–843 (2006)

    Article  Google Scholar 

  7. S.P. Hau-Riege, R.A. London, G. Huldt, H.N. Chapman, Pulse requirements for X-ray diffraction imaging of single biological molecules. Phys. Rev. E 71(6), 061919 (2005)

    Article  ADS  Google Scholar 

  8. S.P. Hau-Riege, R.A. London, A. Szoke, Dynamics of biological molecules irradiated by short X-ray pulses. Phys. Rev. E 69(5), 051906 (2004)

    Article  ADS  Google Scholar 

  9. Z. Jurek, G. Faigel, The effect of tamper layer on the explosion dynamics of atom clusters. Eur. Phys. J. D 50(1), 35–43 (2008)

    Article  ADS  Google Scholar 

  10. C. Gnodtke, U. Saalmann, J.M. Rost, Ionization and charge migration through strong internal fields in clusters exposed to intense X-ray pulses. Phys. Rev. A 79(4), 041201 (2009)

    Article  ADS  Google Scholar 

  11. M. Lewerenz, B. Schilling, J.P. Toennies, Successive capture and coagulation of atoms and molecules to small clusters in large liquid helium clusters. J. Chem. Phys. 102, 8191–8207 (1995)

    Article  ADS  Google Scholar 

  12. D.J. Merthe, V.V. Kresin, Electrostatic deflection of a molecular beam of massive neutral particles: fully field-oriented polar molecules within superfluid nanodroplets. J. Phys. Chem. Lett. 7(23), 4879–4883 (2016)

    Article  Google Scholar 

  13. A.S. Chatterley, C. Schouder, L. Christiansen, B. Shepperson, M.H. Rasmussen, H. Stapelfeldt, Long-lasting field-free alignment of large molecules inside helium nanodroplets. Nat. Commun. 10(1), 1–7 (2019)

    Article  Google Scholar 

  14. D. Schomas, C. Medina, L.B. Ltaief, R. Fink, S. Mandal, S. Krishnan, R. Michiels, M. Debatin, F. Stienkemeier, S. Toleikis, et al., Ignition of a helium nanoplasma by x-ray multiple ionization of a heavy rare-gas core (2020). arXiv preprint arXiv:2005.02944

  15. A. Heidenreich, B. Grüner, M. Rometsch, S. Krishnan, F. Stienkemeier, M. Mudrich, Efficiency of dopant-induced ignition of helium nanoplasmas. New J. Phys. 18(7), 073046 (2016)

    Article  ADS  Google Scholar 

  16. A. Heidenreich, I. Last, J. Jortner, Extreme ionization of Xe clusters driven by ultraintense laser fields. J. Chem. Phys. 127(7), 074305 (2007)

    Article  ADS  Google Scholar 

  17. A. Heidenreich, I. Last, J. Jortner, Simulations of extreme ionization and electron dynamics in ultraintense laser-cluster interactions. Israel J. Chem. 47(1), 89–98 (2007)

    Article  Google Scholar 

  18. A. Heidenreich, I. Infante, J.M. Ugalde, Ion energetics in electron-rich nanoplasmas. New J. Phys. 14(7), 075017 (2012)

    Article  ADS  Google Scholar 

  19. M.V. Ammosov, N.B. Delone, V.P. Kralnov, Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov. Phys. JETP 64, 1191 (1986)

    ADS  Google Scholar 

  20. W. Lotz, Electron-impact ionization cross-sections and ionization rate coefficients for atoms and ions. Astrophys. J. Suppl. Ser. 14, 207 (1967)

    Article  ADS  Google Scholar 

  21. T. Fennel, L. Ramunno, T. Brabec, Highly charged ions from laser-cluster interactions: local-field-enhanced impact ionization and frustrated electron-ion recombination. Phys. Rev. Lett. 99(23), 233401 (2007)

    Article  ADS  Google Scholar 

  22. H. Buchenau, J. Toennies, J. Northby, Excitation and ionization of \(^4\)He clusters by electrons. J. Chem. Phys. 95(11), 8134–8148 (1991)

    Article  ADS  Google Scholar 

  23. P. Lablanquie, L. Andric, J. Palaudoux, U. Becker, M. Braune, J. Viefhaus, J. Eland, F. Penent, Multielectron spectroscopy: Auger decays of the argon 2p hole. J. Electron Spectrosc. Rel. Phenom. 156, 51–57 (2007)

    Article  Google Scholar 

  24. M. Walter, J. Briggs, Photo-double ionization of molecular hydrogen. J. Phys. B 32(11), 2487 (1999)

    Article  ADS  Google Scholar 

  25. A. Rudenko, B. Feuerstein, K. Zrost, V.L.B. de Jesus, T. Ergler, C. Dimopoulou, C.D. Schröter, R. Moshammer, J. Ullrich, Fragmentation dynamics of molecular hydrogen in strong ultrashort laser pulses. J. Phys. B 38(5), 487 (2005)

    Article  ADS  Google Scholar 

  26. D.S. Peterka, J.H. Kim, C.C. Wang, L. Poisson, D.M. Neumark, Photoionization dynamics of pure helium droplets. J. Phys. Chem. A 111, 7449 (2007)

    Article  Google Scholar 

  27. K. Tang, J. Toennies, The van der Waals potentials between all the rare gas atoms from He to Rn. J. Chem. Phys. 118(11), 4976–4983 (2003)

    Article  ADS  Google Scholar 

  28. D. Bonhommeau, N. Halberstadt, private comm. (2019)

  29. A. McKellar, High resolution infrared spectra of \(\text{ H}_2\)-Ar, HD-Ar, and \(\text{ D}_2\)-Ar van der Waals complexes between 160 and \(8620\,\text{ cm}^{- 1}\). J. Chem. Phys. 105(7), 2628–2638 (1996)

    Article  ADS  Google Scholar 

  30. I. Last, J. Jortner, Quasiresonance ionization of large multicharged clusters in a strong laser field. Phys. Rev. A 60(3), 2215 (1999)

    Article  ADS  Google Scholar 

  31. B. Ziaja, H. Chapman, R. Santra, T. Laarmann, E. Weckert, C. Bostedt, T. Möller, Heterogeneous clusters as a model system for the study of ionization dynamics within tampered samples. Phys. Rev. A 84(3), 033201 (2011)

    Article  ADS  Google Scholar 

  32. A. Heidenreich, B. Grüner, D. Schomas, F. Stienkemeier, S.R. Krishnan, M. Mudrich, Charging dynamics of dopants in helium nanoplasmas. J. Mod. Opt. 64(10–11), 1061–1077 (2017)

    Article  ADS  Google Scholar 

  33. I. Last, J. Jortner, A. Heidenreich, Two-directional collisional energy exchange between electrons and ions in exploding clusters. Eur. Phys. J., Special Topics issue Intense laser-matter interaction in atoms (2021)

  34. S.P. Hau-Riege, R.A. London, H.N. Chapman, A. Szoke, N. Timneanu, Encapsulation and diffraction-pattern-correction methods to reduce the effect of damage in X-ray diffraction imaging of single biological molecules. Phys. Rev. Lett. 98(19), 198302 (2007)

    Article  ADS  Google Scholar 

  35. R. Klingelhöfer, H. Moser, Production of large hydrogen clusters in condensed molecular beams. J. Appl. Phys. 43(11), 4575–4579 (1972)

    Article  ADS  Google Scholar 

  36. J. Miao, R.L. Sandberg, C. Song, Coherent X-ray diffraction imaging. IEEE J. Sel. Top. Quant. Electron. 18(1), 399–410 (2012)

    Article  ADS  Google Scholar 

  37. K. Kuyanov-Prozument, A.F. Vilesov, Hydrogen clusters that remain fluid at low temperature. Phys. Rev. Lett. 101, 205301 (2008)

    Article  ADS  Google Scholar 

  38. S. Goyal, D.L. Schutt, G. Scoles, Vibrational spectroscopy of sulfur hexafluoride attached to helium clusters. Phys. Rev. Lett. 69, 933–936 (1992)

    Article  ADS  Google Scholar 

  39. S. Kuma, H. Nakahara, M. Tsubouchi, A. Takahashi, M. Mustafa, G. Sim, T. Momose, A.F. Vilesov, Laser induced fluorescence spectroscopy of tetracene with large Ar, Ne, and \(\text{ H}_2\) clusters in superfluid He nanodroplets. J. Phys. Chem. A 115(25), 7392–7399 (2011)

    Article  Google Scholar 

  40. M. Kelbg, M. Zabel, B. Krebs, L. Kazak, K.-H. Meiwes-Broer, J. Tiggesbäumker, Temporal development of a laser-induced helium nanoplasma measured through Auger emission and above-threshold ionization. Phys. Rev. Lett. 125(9), 093202 (2020)

    Article  ADS  Google Scholar 

  41. S. Vinko, U. Zastrau, S. Mazevet, J. Andreasson, S. Bajt, T. Burian, J. Chalupsky, H.N. Chapman, J. Cihelka, D. Doria et al., Electronic structure of an XUV photogenerated solid-density aluminum plasma. Phys. Rev. Lett. 104(22), 225001 (2010)

    Article  ADS  Google Scholar 

  42. L. Schroedter, M. Müller, A. Kickermann, A. Przystawik, S. Toleikis, M. Adolph, L. Flückiger, T. Gorkhover, L. Nösel, M. Krikunova et al., Hidden charge states in soft-X-ray laser-produced nanoplasmas revealed by fluorescence spectroscopy. Phys. Rev. Lett. 112(18), 183401 (2014)

    Article  ADS  Google Scholar 

  43. H. Iwayama, J. Harries, E. Shigemasa, Transient charge dynamics in argon-cluster nanoplasmas created by intense extreme-ultraviolet free-electron-laser irradiation. Phys. Rev. A 91(2), 021402 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Basque Government (project IT1254-19) and from the Spanish Ministerio de Economia y Competividad (project CTQ2015-67660-P), Deutsche Forschungsgemeinschaft (DFG) within the project MU 2347/12-1 and STI 125/22-2 in the frame of the Priority Programme 1840 ‘Quantum Dynamics in Tailored Intense Fields’, and the Carlsberg Foundation. Computational and manpower support provided by IZO-SGI SG Iker of UPV/EHU and European funding (EDRF and ESF) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

AH and MM together developed the research idea. AH performed the calculations and analyzed the data. AH and MM jointly wrote the manuscript.

Corresponding author

Correspondence to A. Heidenreich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidenreich, A., Mudrich, M. Efficient tampering of a coulomb exploding cluster embedded in a hydrogen shell. Eur. Phys. J. Spec. Top. 230, 4025–4034 (2021). https://doi.org/10.1140/epjs/s11734-021-00190-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00190-1

Navigation