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Abstract High-harmonic spectroscopy is a promising candidate for imaging electronic structures and
dynamics in condensed matter by all-optical means and with unprecedented temporal resolution. We
investigate harmonic spectra from finite, hexagonal nanoribbons, such as graphene and hexagonal boron
nitride, in armchair and zig-zag configuration. The symmetry of the system explains the existence and
intensity of the emitted harmonics.

1 Introduction

High-harmonic generation (HHG) has been first observed
in gases [1,2]. Its non-perturbative nature, featuring a
plateau of almost constant high-harmonic yield, was
subsequently explained by the three-step model [3,4]:
An electron is removed from the atom, propagates
under the external field’s influence, and recombines
with the atom. The orbital energies of electrons in
atoms do not depend on momentum, and the electron’s
dispersion relation in the continuum is shaped parabol-
ically. Therefore, electrons in the ground state or free
electrons emit no harmonics. Only transitions between
bound states or recombination from continuum states
back to bound states lead to harmonic emission.

To describe HHG in the bulk of solids, electronic
bands replace the orbital energies and the continuum
[5]. This opens a whole new field of research [6–13].
Analogous to the HHG process in gases, the transi-
tion of electrons between valence and conduction bands
causes high harmonics, called interband harmonics.
Intraband harmonics, on the other hand, are produced
by the movement of electrons in partially filled, non-
parabolic bands. Band structures are usually defined
for periodic or infinite solid bulk systems. However,
every realistic system has boundaries, which may cause
completely different HHG spectra compared to the bulk
[14–18]. Graphene and hexagonal boron nitride (hBN)
are two-dimensional materials that possess fascinating
features with promising potential applications [19,20].
Their hexagonal structure allows for two different edges:
zig-zag and armchair. While graphene contains only
carbon atoms (all identical), hBN consists of boron and
nitrogen atoms. Recently, the interaction of intense-
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laser light with graphene got into the focus of interest
for its prospects to steer electrons at will on ultrafast
time scales [21–24].

In this article, we investigate the harmonic spec-
tra emitted by hexagonal nanoribbons in two differ-
ent edge configurations, armchair (Sect. 3) and zig-zag
(Sect. 4). We performed our calculations using a real-
space time-dependent Schrödinger solver (as described
in Sect. 2). The results of this publication validate the
tight-binding approach in [25].

2 Methods

The nanoribbons’ Nions atomic nuclei were positioned
in a hexagonal lattice, as described for the armchair
and zig-zag configuration in Sects. 3 and 4. Atomic
units are used throughout this paper unless stated oth-
erwise. The distance between neighboring lattice sites
was 2.683, the bond length in graphene (1.42Å). An
effective Pöschl–Teller potential

V (r) = −
∑

i

Vi

cosh2(ε|r − ri|)
(1)

with ion potentials Vi = 3.2±Vos and screening parame-
ter ε = 2 describe the attractive potentials of the nuclei.
For graphene ribbons, all atoms are carbon, therefore
the additional on-site potential Vos = 0. A non-zero on-
site potential represents two alternating, different kind
of atoms, such as boron and nitrogen in hBN. Figures 1
and 4 show at which lattice sites the ion potentials are
increased or decreased by Vos.

In this work, we did not employ the usual tight-
binding approximation commonly made in condensed-
matter theory. Instead, we have developed a 2D, real-
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space, time-dependent Schrödinger solver for the ab
initio simulation of the intense-laser interaction with
2D matter. In that way, we can reveal differences and
similarities in HHG spectra as compared to corre-
sponding tight-binding studies, e.g., in Ref. [25]. The
non-interacting electronic orbitals in our Schrödinger
solver are defined on a two-dimensional grid of spacing
Δx = Δy = 0.2, which encompasses all lattice sites
plus a border of 8 on each side. In contrast to the usual
tight-binding description, this allows us to have elec-
tron orbitals ϕi (with energies Ei) that are not only
localized at lattice sites but also between them, or free
electrons.

The electronic eigenstates of the system were found
by imaginary-time propagation of the time-dependent
Schrödinger equation

i∂tϕi(r, t) =
[
−1

2
∇2 + V (r)

]
ϕi(r, t) (2)

employing the Crank–Nicolson method [26]. Start-
ing from a random initialization, imaginary timesteps
−0.05i are taken (each step followed by renormalization
of the wavefunction) until the ground state is reached
and the relative change of the state is smaller than the
threshold of 10−18 for two consecutive iterations. To
find the higher-lying states, the workflow is identical
but with an additional (Gram-Schmidt) orthogonaliza-
tion to all previously found states in each iteration. This
procedure gives us all states of interest in the unper-
turbed system.

Real-time simulations of the interaction of all occu-
pied electronic orbitals with a short laser pulse were
performed with a timestep 0.05 using, again, Crank–
Nicolson propagation. The pulse was a ncyc = 4 cycle
sin2-shaped laser pulse of frequency ω = 0.0075 (λ �
6.1mm) with vector potential

A(t) = A0 sin2

(
ωt

2ncyc

)
sin ωt (3)

for 0 < t < 2πncyc/ω and zero otherwise. The electronic
dipoles were recorded at each time step during the laser
pulse and added up according to

P(t) = 2
Noccupied∑

i=1

∫
r|ϕi(r, t)|2 dr, (4)

where Noccupied = Nions/2 is the number of occu-
pied orbitals, each occupied by a spin-up and a spin-
down electron. Harmonic spectra were calculated as
the absolute square of the Fourier transform of the
recorded dipoles, multiplied by a symmetric Hann win-
dow [27,28].

3 Armchair ribbon

First, we investigate a hexagonal nanoribbon in the
armchair configuration. A total of 24 lattice sites are
arranged in the shape of four hexagons, as shown in Fig.
1. For Vos = 0, the armchair ribbon is symmetric about
the horizontal as well as the vertical axis through the
center. The introduction of an on-site potential deep-
ens the blue (square) sites’ potentials while making the
orange (circle) ones shallower. This causes a left-right
asymmetry, while the top–bottom symmetry is con-
served. These (a)symmetries of the system are present
for ribbons consisting of both even and odd numbers of
hexagons. Calculations for a ribbon of 30 sites arranged
in five hexagons are consistent with the results shown
here.

Note that the lines drawn in Fig. 1 connect near-
est neighbors. In tight-binding calculations (such as in
Ref. [25]), hopping takes place along these lines. How-
ever, in our simulation based on the time-dependent
Schrödinger equation, electronic wavefunctions are not
restricted to move along these lines but may propagate
in the entire plane.

The asymmetry in the potential leads to an asymme-
try in the orbitals. Figure 2a shows the highest occupied
(1 and 3) and lowest unoccupied (2 and 4) orbitals with-
out (1 and 2) and with (3 and 4) on-site potential. The
orbitals without on-site potential are horizontally and
vertically symmetric (as is the potential), and there is
only a small bandgap between the occupied and unoc-
cupied states. With an on-site potential, the occupied
orbitals are localized on the sites with deeper potentials
and therefore have a decreased energy. The unoccupied
orbitals are localized on the sites with shallower poten-
tials and therefore have increased energy. This leads to a
bandgap ΔEmin between the occupied and unoccupied
orbitals, which, for Vos � 0.2, grows linearly with the
on-site potential (Fig. 3b). In contrast to tight-binding
methods, our approach allows us to calculate an arbi-

Fig. 1 Armchair ribbon: At the blue (square) lattice sites,
the potential depth is increased by the on-site potential,
Vblue = Vavg + Vos. The orange (circle) sites correspond to
the shallower potentials of depth Vorange = Vavg − Vos. The
arrows indicate the polarization directions of the external
laser field (along the ribbon) and the harmonics referred to
as parallel and perpendicular
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Fig. 2 Orbitals and orbital energies of the armchair rib-
bon. a Orbitals of the armchair ribbon. (1) Highest occu-
pied orbital without on-site potential (Vos = 0). (2) Low-
est unoccupied orbital without on-site potential (Vos = 0).
(3) Highest occupied orbital with on-site potential Vos = 0.4.
(4) Lowest unoccupied orbital with on-site potential Vos =
0.4. b Orbital energies of the armchair ribbon as a func-
tion of on-site potential Vos. Circles mark the orbital ener-
gies of the orbitals shown in (a). The orbitals form three
bands: occupied valence band (blue), unoccupied conduc-
tion band (orange), and box states (gray). The gray shaded
area indicates additional box states lying above those shown
explicitly. The arrows mark the bandwidth of the valence
band (ΔEintra) and the minimum and maximum bandgap
between the valence and (first) conduction band (ΔEmin

and ΔEmax)

trary number of orbitals of increasing energy. The states
above the conduction band describe “free” electrons,
which are not localized on the ribbon but still inside the
simulation box with reflecting boundary conditions.

The incoming laser field is linearly polarized along
the armchair ribbon. All emitted harmonics are linearly
polarized in the same direction (parallel harmonics, as
indicated in Fig. 1). The armchair ribbon is top–bottom
symmetric, regardless of on-site potential. Without a
top–bottom asymmetry in the system, the horizontally
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Fig. 3 Harmonic spectra of the armchair ribbon in paral-
lel direction. a Harmonic spectra without (bold orange line,
Vos = 0) and with (blue line, Vos = 0.4) on-site potential.
b Harmonic spectra as a function of harmonic order and on-
site potential. The bandwidth ΔEintra of the valence band
is the upper bound of the intraband harmonics. The mini-
mum (ΔEmin) and maximum (ΔEmax) bandgaps limit the
energies of the interband harmonics. Transitions to the box
states generate harmonics above ΔEmax. Triangles of the
corresponding colors indicate the energies of the two spec-
tra shown in (a)

polarized laser leads to a perfectly horizontal move-
ment of the electrons, which generates only horizontally
polarized harmonics. Therefore, the armchair ribbon
can not generate perpendicular harmonics. The band-
widths and bandgaps (ΔEintra, ΔEmin, and ΔEmax)
from Fig. 2b explain the most important features of
the harmonic spectra shown in Fig. 3. Intraband har-
monics are only present at harmonic energies below the
width of the valence band ΔEintra. Interband harmon-
ics appear between the minimum ΔEmin and maximum
ΔEmax bandgap between the valence and (first) con-
duction band. Above the two bands are the box states
(marked as gray lines in Fig. 2b), which are not local-
ized on the ribbon, and whose energies are determined
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Fig. 4 Zig-zag ribbon: At the blue (square) lattice sites,
the potential depth is increased by the on-site potential,
Vblue = Vavg + Vos. The orange (circle) sites correspond to
the shallower potentials of depth Vorange = Vavg − Vos. The
arrows indicate the polarization directions of the external
laser field (along the ribbon) and the harmonics referred to
as parallel and perpendicular

by the size of the simulation box. The figure only shows
the energies of the four lowest box states (which are
pairwise almost degenerate), but many more lie above
them, indicated by the gray shaded area. Transitions
to these box states cause harmonics above ΔEmax. In
an experiment, transitions to higher bands or the con-
tinuum would cause harmonics beyond the maximum
bandgap. These can not be described in tight-binding
approximation with one atomic orbital per site, because
then the energy difference between states is bound from
above by ΔEmax (see Ref. [25]).

4 Zig-zag ribbon

In the zig-zag configuration, a total of 26 lattice sites
are arranged in six hexagons, as shown in Fig. 4. On
the orange (circle) sites, the on-site potential decreases
the potential depth, while on the blue (square) sites,
it deepens the potential. The on-site potential causes
a top–bottom asymmetry but no left-right asymmetry.
Reference [25] investigates the influence of the ribbon’s
length using a computationally less demanding tight-
binding approach. Full time-dependent Schrödinger cal-
culation results for a ribbon of 30 sites (seven hexagons)
agree with those for 26 sites (six hexagons).

As for the armchair ribbon, the asymmetry of
the potential leads to decreased energies of states in
the valence band, localized at the deeper sites, and
increased energies of states in the conduction bands,
localized at the shallower sites (see Fig. 5). The mini-
mum bandgap increases almost linearly with the on-site
potential; the bandwidths of both bands decrease.

The parallelly polarized harmonics (Fig. 6a) are
present with and without on-site potential. The band-
width and bandgaps can explain the cutoffs of both
intra- and interband harmonics. Perpendicular harmon-
ics (Fig. 6b) with on-site potential agree with these cut-
offs, as well. Without an on-site potential, there is no
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Fig. 5 Orbitals and orbital energies of the zig-zag ribbon.
a Orbitals of the zig-zag ribbon. (1) Highest occupied orbital
without on-site potential (Vos = 0). (2) Lowest unoccu-
pied orbital without on-site potential (Vos = 0). (3) Highest
occupied orbital with on-site potential Vos = 0.4. (4) Low-
est unoccupied orbital with on-site potential Vos = 0.4.
b Orbital energies of the zig-zag ribbon as a function of
on-site potential Vos. Circles mark the orbital energies of
the orbitals shown in (a). The orbitals form three bands:
occupied valence band (blue), unoccupied conduction band
(orange), and box states (gray). The gray shaded area
indicates additional box states lying above those shown
explicitly. The arrows mark the bandwidth of the valence
band (ΔEintra) and the minimum and maximum bandgap
between the valence and (first) conduction band (ΔEmin

and ΔEmax)

top–bottom asymmetry, and therefore, almost no har-
monics perpendicular to the laser are observed. Transi-
tions to the box states lead to weak harmonic emission
above ΔEmax.
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Fig. 6 Harmonic spectra of the zig-zag ribbon as a func-
tion of on-site potential in a parallel and b perpendicular
polarization. The bandwidth ΔEintra of the valence band
is the upper bound of the intraband harmonics. The mini-
mum (ΔEmin) and maximum (ΔEmax) bandgaps limit the
energies of the interband harmonics. Transitions to the box
states generate harmonics above ΔEmax

5 Conclusion

The introduction of an on-site potential in hexagonal
nanoribbons causes lower energies for occupied states
and higher energies for unoccupied states. The valence
band’s bandwidth decreases, and the minimum and
maximum bandgaps between the valence and conduc-
tion bands increase. These three energies explain the
overall features in harmonic spectra for different on-
site potentials. Intraband harmonics are only present at
energies below the valence bandwidth. Interband har-
monics are present at energies between the minimum
and maximum bandgaps. For a laser polarized along
the ribbon, the resulting harmonics are polarized in
the same direction unless a non-zero on-site potential
causes a top–bottom asymmetry, which is only possible
in the zig-zag ribbon.

The results of this paper provide valuable verifica-
tion of simpler tight-binding models [25]. Our approach

is not limited to a fixed number of states (grouped in
bands), and our results account for transitions to even
higher bands or the continuum. However, these tran-
sitions are expected to play an important role only in
the generation of higher harmonics beyond the cutoff
ΔEmax, leading to higher order plateaus with decreas-
ing yield (see, e.g., [29]). On the other hand, tight-
binding approaches capture the essential mechanisms
underlying high-harmonic generation up to ΔEmax, are
computationally much less demanding, and thus can be
used to investigate much larger systems.

The datasets generated and analyzed during this
study are available at Ref. [30].
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15. H. Drüeke, D. Bauer, Robustness of topologically sensi-
tive harmonic generation in laser-driven linear chains.
Phys. Rev. A 99, 053402 (2019). https://doi.org/10.
1103/PhysRevA.99.053402

16. C. Jürß, D. Bauer, High-harmonic generation in Su-
Schrieffer-Heeger chains. Phys. Rev. B 99, 195428
(2019). https://doi.org/10.1103/PhysRevB.99.195428

17. K.K. Hansen, D. Bauer, L.B. Madsen, Finite-system
effects on high-order harmonic generation: From atoms
to solids. Phys. Rev. A 97, 043424 (2018). https://doi.
org/10.1103/PhysRevA.97.043424

18. A. Chacón, W. Zhu, S.P. Kelly, A. Dauphin, E. Pisanty,
D. Kim, D.E. Kim, A. Picón, C. Ticknor, M.F. Ciap-
pina, A. Saxena, M. Lewenstein, Observing topologi-

cal phase transitions with high harmonic generation.
arXiv:1807.01616 (2020)

19. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S.
Novoselov, A.K. Geim, The electronic properties of
graphene. Rev. Mod. Phys. 81, 109–162 (2009). https://
doi.org/10.1103/RevModPhys.81.109

20. J. Wang, F. Ma, M. Sun, Graphene, hexagonal boron
nitride, and their heterostructures: properties and appli-
cations. RSC Adv. 7(27), 16801–16822 (2017). https://
doi.org/10.1039/C7RA00260B

21. H. Koochaki Kelardeh, V. Apalkov, M.I. Stockman,
Graphene superlattices in strong circularly polarized
fields: chirality, Berry phase, and attosecond dynam-
ics. Phys. Rev. B 96, 075409 (2017). https://doi.org/
10.1103/PhysRevB.96.075409

22. T. Higuchi, C. Heide, K. Ullmann, H.B. Weber, P.
Hommelhoff, Light-field-driven currents in graphene.
Nature 550, 224–228 (2017). https://doi.org/10.1038/
nature23900

23. C. Heide, T. Higuchi, H.B. Weber, P. Hommelhoff,
Coherent electron trajectory control in graphene. Phys.
Rev. Lett. 121, 207401 (2018). https://doi.org/10.1103/
PhysRevLett.121.207401

24. M. Baudisch, A. Marini, J.D. Cox, T. Zhu, F. Silva,
S. Teichmann, M. Massicotte, F. Koppens, L.S. Levi-
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