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Abstract Focusing on systems of sinusoidally coupled active rotators, we study the emergence and stability
of periodic collective oscillations for systems of identical excitable units with repulsive all-to-all interaction.
Special attention is put on splay states and two-cluster states. Recently, it has been shown that one-
parameter families of such systems, containing the parameter values at which the Watanabe–Strogatz
integrability takes place, feature an instantaneous non-local exchange of stability between splay and two-
cluster states. Here, we illustrate how in the extended families that circumvent the Watanabe–Strogatz
dynamics, this abrupt transition is replaced by the “gradual transfer” of stability between the 2-cluster
and the splay states, mediated by mixed-type solutions. We conclude our work by recovering the same
kind of dynamics and transfer of stability in an ensemble of voltage-coupled Morris–Lecar neurons.

1 Introduction

One of the most prolific applications of the theory of
dynamical systems lies in the field of neuroscience. At
least partially, this is related to the fact that a single
neuron can be understood and modeled as an electrical
circuit with nonlinear feedback. On its own, it possesses
a stable state of rest but may show a short-term large-
scale deviation (spike) from this resting state if suffi-
ciently stimulated, e.g., by incoming spikes from other
neurons. This physiological property, commonly known
as excitability, translates to the corresponding dynam-
ical system being close to some limit cycle bifurcation
[1]. In particular, class I excitability relates to a saddle-
node homoclinic bifurcation [2] also known as a saddle-
node bifurcation on an invariant circle. This bifurcation
with normal form ẋ = ε + x2 is essentially a saddle-
node bifurcation, but takes place on the extended real
line R̂ = R ∪ {∞}. For ε < 0, the system possesses a
stable equilibrium at xs = −√−ε and an unstable one
at xu =

√−ε. At ε = 0, it undergoes a saddle-node
bifurcation after which the system becomes oscillatory:
within the time π ε−1/2, x traverses the entire R̂ by
passing the point at infinity. For small negative ε, a
sufficiently strong perturbation δx of the stable state
xs (with δx > 2

√−ε) traces in finite time the extended
real line and comes back to xs.

Two types of coupling between excitable units can,
informally, be distinguished. One may speak of attrac-
tive coupling if two units at close distance to each other
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display, regardless of their position in the state space,
a tendency to approach each other. On the other hand,
if the contribution of coupling, taken alone, tends to
increase the distance, it is natural to call the coupling
repulsive.

If the identical excitable units are decoupled, there
exists a stable collective equilibrium for the ensemble
dynamics, with every element located at its state of rest.
Attractive coupling binds these units stronger together,
enhancing the stability of the collective equilibrium. In
contrast, if some or all units are coupled repulsively,
stability of the collective equilibrium is weakened or
even gets lost, and non-trivial dynamics may arise [3–
7]. In what follows, we focus on the case of exclusively
repulsive coupling.

This paper consists of four parts. In Sect. 2, we dis-
cuss the notion of an active rotator that serves as one-
dimensional representative of class I excitable elements.
We also formalize the notions of attractive and repul-
sive coupling. In Sect. 3, we review previous results
from [7]. The focus is put on families of systems that,
for a suitable choice of parameters, feature a special
type of partial integrability, known as the Watanabe–
Strogatz (abbreviated below as WS) integrability [8,9].
In particular, existence and stability of such robust peri-
odic solutions as splay states and two-cluster states are
concerned. The non-local transfer of stability between
these states takes place when the system becomes WS-
integrable. In Sect. 4 we briefly sketch the unfolding of
non-locality in the bifurcation scenario in presence of
additional governing parameters, providing a more gen-
eral understanding of families of phase models. Finally,
in Sect. 5, we present the example of an ensemble of
coupled Morris–Lecar neurons [10] where numerical evi-
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dence confirms that the results obtained from active
rotators pertain as well to ensembles of higher dimen-
sional class I excitable units.

2 Ensembles of active rotators

We start by discussing the concept of an active rota-
tor. Just prior to the homoclinic saddle-node bifurca-
tion, asymptotic dynamics in the phase space is essen-
tially one-dimensional: decay of disturbances to the
stable state of rest occurs along either of two one-
dimensional components (separatrices) of the unsta-
ble manifold of the unstable equilibrium. It is conve-
nient to parametrize the latter manifold with a single
coordinate. Since two equilibria and the separatrices
form the closed contour, we view this coordinate as a
phase-like variable (introduction of the proper phase
is impossible in the context, involving the stable state
of rest). Dynamics of this variable φ obeys the equa-
tion φ̇ = f(φ, δ) where δ is the governing parameter;
we set δ = 0 at the value corresponding to the saddle-
node homoclinic bifurcation. The sufficiently smooth
function f is assumed to possess for δ < 0 exactly
two zeros f(φs, δ) = f(φu, δ) = 0 with f ′(φs, δ) < 0
and f ′(φu, δ) > 0, and for δ > 0 no zeros whatsoever
(here and in what follows, a prime denotes the deriva-
tive with respect to φ). The zeros φs and φu are then
the stable and unstable equilibria of the above equa-
tion, respectively. At δ = 0, these two equilibria merge
and disappear, so that a periodic motion of φ emerges.
Therefore, for sufficiently small negative δ, systems of
the considered type are class I excitable. Commonly,
they are known as active rotators [11].

Intrinsically related to other popular simple mod-
els of excitable neural cells like the QIF (quadratic
integrate-and-fire) neurons and theta-neurons, active
rotators have been intensively analyzed within the last
decades. Along with different variants of dynamics of
a single unit (that can be augmented by taking into
account adaptation, see, e.g., [12]), much attention,
starting from the original publication [11], has been
paid to ensembles of coupled active rotators in the
presence of noise [13–16]. Closer to our current con-
text, interrelation between the Watanabe–Strogatz for-
malism and the existence of marginally stable splay
states in ensembles of the pulse-coupled QIF neurons
has been established in [17], whereas the derivation of
a set of exact macroscopic equations for a network of
spiking neurons and complete interpretation of ensem-
ble dynamics in terms of the firing rate and the mean
membrane potential has been performed in [18].

Below, we assume that the interaction between two
active rotators φi and φj depends only on their mutual
phase difference. Hence, it can be described by a cou-
pling term of the form g(φi − φj). If the coupling func-
tion g : S1 → R possesses a zero at 0, we call it attrac-
tive if g′(0) < 0 and repulsive if g′(0) > 0.

We are interested in systems of N identical active
rotators, coupled in such a way that the interaction (i)
is pairwise, (ii) depends on the difference between the
phases, (iii) is all-to-all, and (iv) is repulsive. Such a
system can be described by the equation

φ̇j = f(φj , δ) +
1
N

N∑

k=1

g(φk − φj), (1)

so that f(φj , δ) characterizes the on-site dynamics of
the unit j and g determines the coupling within each
pair of two such units. Systems like (1) have two general
properties. First, the units cannot surpass each other.
They preserve the order of the phases φj : if, at some
time t, the ordering is fixed, e.g., as φ1 ≤ φ2 ≤ · · · ≤
φN < φ1 + 2π, it holds for all times t′. Equivalently,
φi(t) = φj(t) at some t implies φj(t′) = φj(t′) for all
t′. We may therefore always assume the units to be
ordered as above without loss of generality. Permuta-
tions of units lead to equivalent solutions for different
ordering.

The second important property is that the system (1)
possesses a synchronous subspace in which the instan-
taneous values of all phases coincide. Inside this sub-
space, the coupling terms vanish identically and every
unit tends to its equilibrium value φs. The collective
state of rest Φs = (φs, . . . , φs) is stable if the coupling is
attractive, since each unit is driven towards φs not only
by its on-site dynamics but by the other units, as well.
However, Φs can be destabilized by sufficiently strong
repulsive coupling [6].

The arguably simplest choice for a system of the type
(1) was introduced by Shinomoto and Kuramoto [11]
and is given by

φ̇j = ω − sin φj +
κ

N

N∑

k=1

sin(φk − φj). (2)

For |ω| < 1, it yields an ensemble of active rota-
tors, and repulsive coupling translates to the condition
κ < 0. The starting point of our work was the obser-
vation, made in [6], that this system shows unconven-
tional dynamics: a continuum of periodic orbits, each
one possessing at least N − 3 neutrally stable direc-
tions. The reason for this lies in the fact that (2) fulfills
conditions for the Watanabe–Strogatz integrability [8].
Being interested in the general properties of systems of
excitable units, the question thus arises how generic the
solutions found in [6] are.

3 Persistence and stability of splay states
and 2-cluster states

In this section, we review some of the main results
from [7]. As mentioned above, the dynamics of (2) is
highly degenerate. The reason for this is the invariance
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of equations not only (obviously) with respect to per-
mutations of the units, but also with respect to trans-
formations forming a subgroup of the group of Möbius
transformations [8,9]. This degeneracy can be lifted in
different ways. One option is to make the individual
units non-identical, e.g., by introducing site-dependent
parameters ωj or κj . Another option is to couple each
unit to a common field H via the second or higher
order Fourier mode, i.e., perturbation terms of the form
ε h(φj) = εH(φ)eikφj +c.c. with k ≥ 2. The simple way
to do so is by introducing perturbations in the on-site
dynamics, so that the generalized model reads

φ̇j = ω − sin φj + εh(φj) +
κ

N

N∑

k=1

sin(φk − φj), (3)

where

h(φ) =
∞∑

m=2

(am sin mφ + bm cos mφ) , (4)

and ε controls the deviation from the WS-integrable
case ε = 0. Since for the integrable case, all periodic
solutions of the continuum observed in [6] possess neu-
trally stable directions, it cannot readily be assumed
that any of these solutions persist.

However, from the infinitude of different periodic
solutions of the system (2), reported in [6], two solu-
tions stand out: splay states and 2-cluster states. In
n-cluster solutions, the elements form n groups within
which their instantaneous coordinates coincide.

A pure splay state of period T is a periodic solu-
tion of a system like (1) or (2) of the form φj(t) =
ψ

(
t − (j − 1) T

N

)
for some T -periodic function ψ(t).

Hence, all phases are equally staggered in time but not
necessarily on the circle S1: for a general active rotator,
the difference φj(t)−φk(t) is in general not a constant.

Variations of this pure splay state are possible. We
call a periodic solution a clustered splay state of type
(n,m) if the ensemble splits in n clusters of m units
each, such that the cluster coordinates are equally stag-
gered in time. Thus, a pure splay state is of the type
(N, 1), while for a clustered splay state of, e.g., type
(3, 2) and period T , the 6 units can be written as, e.g.,
φ1(t) = φ2(t) = φA(t), φ3(t) = φ4(t) = φB(t), and
φ5(t) = φ6(t) = φC(t), with φA(t) = ψ(t), φB(t) =
ψ(t−T/3), and φC(t) = ψ(t−2T/3) for an appropriate
T -periodic function ψ.

A special class of clustered splay states are those of
type (2, N/2)1, i.e., solutions that consist of two clusters
A and B of equal size. As will become clear below, this
special class differs significantly from other splay types,
so that they deserve to be considered on their own.

Splay States In the ensemble (2), increase in the repul-
sion strength leads to the birth of the splay states
and the clustered splay solutions at the threshold value

1 Here, we assume that N is even.

κ0 = −√
1 − ω2, at which also the collective state of

rest Φs undergoes a transcritical homoclinic bifurcation
[19], colliding with ∼ 2N−1 saddle steady states [6]. The
continuum of periodic solutions then arises through the
fact that WS-integrability implies that the phase space
TN ∼= S1×· · ·×S1 bears a (N−3)-dimensional foliation
into (generally) 3-dimensional submanifolds. As a con-
sequence: the splay states are hyperbolic only w.r.t. the
invariant submanifolds within which they exist. Moving
to a sufficiently close neighboring submanifold induces a
continuous change in the local vector field under which
the periodic orbit (as normally hyperbolic manifolds)
persists but is in general not a splay state anymore.
This results in the formation of the continuum.

A consequence of WS-integrability is the existence of
N −3 functionally independent constants of motion [8].
These constants of motion correspond to the (N − 3)-
dimensional foliation of the phase space.

For small ε 	= 0, the splay states are persistent. They
become isolated hyperbolic periodic solutions, whose
stability depends on the sign of ε. On the other hand,
other periodic orbits in the immediate vicinity of these
splay states are destroyed. However, the continuum
seems to form an invariant manifold M which, by itself,
persists for ε 	= 0 as well. Dynamics on M then looks
as follows: the higher order terms of h introduce a slow
drift term on M that results in a spiraling motion on it.
A symmetry argument then implies that this drift can-
not act indefinitely. Instead, the spiraling motion must
converge towards some periodic orbits with high sym-
metry, such as splay states. For initial conditions that
do not lie in M, the spiraling motion is preceded by a
fast convergence towards M.

Two-cluster states Periodic oscillations of two clus-
ters play a noticeable role in the asymptotic dynam-
ics of (3). While for ε = 0, all other (clustered) splay
states can be understood within the framework of WS-
integrability, the 2-cluster states form a separate case.
The reason for this lies in the fact that the Watanabe–
Strogatz formalism requires that the ensemble consists
of at least three distinct clusters: only then the dimen-
sional reduction to an equivalent 3-dimensional sys-
tem, corresponding to the foliation of TN in invari-
ant 3-dimensional manifolds, can be achieved. As a
consequence, 2-cluster states do not emerge through
the transcritical heteroclinic bifurcation. Instead, they
are formed in heteroclinic bifurcations or saddle-node
homoclinic bifurcations that involve 2-cluster equilibria
[7]. In this review, we focus on the exemplary case

φ̇j = ω − sin φj + ε sin 2φj +
κ

N

N∑

k=1

sin(φk − φj), (5)

for simplicity. We note, however, that the discussed
results can be extended to generic choices for h(φj) in
(4).

One of the main results in [7] is that the higher order
Fourier modes in (3) determine the splitting stability
of the 2-cluster states. Stability of clustered periodic
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solutions comes in two different flavors: stability against
perturbations that leave clusters whole (in what follows
called non-splitting) or against perturbations that split
single phases from one cluster (in what follows called
splitting) [20]. Thus, a non-splitting perturbation moves
one or several clusters as a whole, while splitting per-
turbations are those that dissolve one cluster with the
condition that its “center-of-mass” is preserved.

For systems like (3), there occurs a switch of stabil-
ity w.r.t. splitting perturbations for periodic 2-cluster
states at ε = 0 and for general h as long as both clus-
ters are of equal size. For example, in (5), these peri-
odic states are stable for small ε < 0 and unstable for
small ε > 0. Transition for the splay states goes in the
opposite direction: being stable for ε > 0, they become
unstable for ε < 0. Like for the splay states, we observe
that a randomly chosen initial state φ ∈ M close to the
periodic 2-cluster state slowly evolves either towards
this orbit or away from it, depending on the asymp-
totic stability of the 2-cluster state.

However, if the numbers of units in two clusters dif-
fer, the picture changes dramatically. Let the Floquet
multipliers ΛA and ΛB , respectively, characterize the
splitting stability of the clusters A and B. Then, at
ε = 0, the identity

ΛAΛB = 1, (6)

holds for any periodic 2-cluster state. In fact, this
result generalizes to arbitrary WS-integrable systems.
An immediate consequence of (6) is that for the equal
size clusters A and B are of equal size, it follows
ΛA = ΛB = 1: neutrality on the verge of the stability
change. On the other hand, if A and B are of differ-
ent sizes, ΛA 	= ΛB and thus one cluster [in case of (2)
the smaller one] must be stable towards splitting per-
turbations, while the other (the larger one) is unstable.
In particular, these clustered oscillatory states are not
part of the continuum of orbits at ε = 0; they are hyper-
bolic, i.e., isolated. States, consisting of two unequal
clusters, are always asymptotically unstable in an open
neighborhood of ε = 0; for fixed ensemble size N , one
can always choose ε 	= 0 sufficiently small, such that
only 2-cluster states of equal cluster size can be sta-
ble. Growth of |ε| for negative ε leads to stabilization
of unequal oscillatory clusters. For sufficiently large N ,
stability regions for these states form in the parameter
space a nested pattern: for example, on the parame-
ter plane of the ensemble with 100 units, the stability
region of the state with periodic clusters of the sizes
53 and 47 lies inside the stability domain of the state
with cluster sizes 52 and 48 which, in its turn, is located
within the stability region of the state with cluster sizes
51 and 49 [7]. The more A and B differ in size, the larger
|ε| and |κ| must be chosen to suppress splitting.

Analysis, performed in [7], was restricted to one-
parameter families of ensembles of active rotators
that included the parameter value corresponding to
the Watanabe–Strogatz integrability. Such families are
degenerate: a generic family of dynamical systems,
describing the ensembles of active rotators, nowhere

features the WS-integrability. A consequence of the
degeneracy is the unusual transition, reported in [7]; the
non-local exchange of stability between the splay states
and the two-clustered oscillations. Below, we extend the
analysis to two-parameter families of dynamical sys-
tems. Within this framework, the non-local transition is
unfolded into conventional bifurcation scenarios, involv-
ing the pitchfork and the saddle-node bifurcations of
oscillatory states.

4 Circumventing the point of
WS-integrability

The space H = span ({sin mφ, cos nφ}m,n≥2) of pertur-
bation functions h in (3) is of infinite dimension. The
point 0 ∈ H corresponds to the WS-integrable model
(2). Varying the value of ε in (3) renders a path Γ
in H through the point 0 where both the splay states
and the 2-cluster states, change stability simultane-
ously. However, for active rotators augmented by high-
order Fourier modes, a generic path through the param-
eter space does not contain the origin: the Watanabe–
Strogatz point 0. Hence, the question arises how, for
such generic paths, stability of splay states and 2-cluster
states are related to each other.

Clustered splay states of any type (n,m) feature in
general two different types of (discrete) symmetry. The
first one is symmetry under permutations within each
cluster: since all units are identical, interchanging any
two units j and k of one cluster (i.e., when φj = φk)
leads to an equivalent state. The second symmetry is
a spatio-temporal one: let the index α ∈ {1, . . . , n}
enumerate the clusters An of the state (so that, e.g.,
φ1 = · · · = φm = φA1 belong to cluster A1) then
shifting t → t − T/n together with shifting each index
j → j + m leads again to an equivalent state. Clus-
tered Splay states of different types (n,m) and (n′,m′)
then feature different symmetry groups. We expect
that stability should be transferred between clustered
splay states by means of families of periodic solutions
with broken symmetry, existing within bounded param-
eter intervals. Consider the example of N = 4 units,
where only pure splay states (i.e., (n,m) = (4, 1)) and
2-cluster states (i.e., (n′,m′) = (2, 2)) can exist. A
transfer of stability occurs via periodic states that are
“almost splays” at the bifurcation of splay states, and
then evolve into “nearly 2-clusters” when they approach
the periodic 2-cluster state. In doing so, these peri-
odic states share neither of the symmetries of the splay
or the 2-cluster state and are thus of lower (or bro-
ken) symmetry. An appropriate bifurcation that low-
ers the symmetry of a periodic solution is the pitch-
fork bifurcation (“symmetry crisis”). Since both types
of the pitchfork—the super- and the subcritical ones—
are possible in this situation, there are several variants
of the overall bifurcation scenario. We sketch the basic
ones in Fig. 1.
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Fig. 1 Schematic depiction of bifurcation scenarios for
periodic orbits along the path Γ (s) through the param-
eter space. Here, s denotes the generic parameterization
along the path. Pitchfork bifurcations of the splay solu-
tion and of the periodic clustered state occur at s1 and
s2, respectively; the value s3 in the b denotes the saddle-
node (fold) bifurcation of periodic solutions. Green: splay
states; orange: 2-cluster states; black: mixed states with bro-
ken symmetry. Solid curves represent stable periodic orbits,
while the dashed curves show the unstable ones. a Both
pitchfork bifurcations at s1 and s2 are supercritical; pairs

of stable broken symmetry states transfer stability between
them. This scenario occurs, e.g., in Eq. (7) for ω = 0.6
and κ = −0.85. b A combination of two different types of
pitchfork bifurcations; is observed, e.g., for ω = 0.6 and
κ = −1.25 in Eq. (7). Here, before the basic states change
stability, two pairs of broken symmetry states emerge in
saddle-node bifurcations at s3. c both pitchfork bifurcations
at s1 and s2 are subcritical; all mediating broken symmetry
states are, in this case, unstable. This scenario takes place,
e.g., in the ensemble of coupled Morris–Lecar neurons (see
Sect. 5 below)

For an illustration, we restrict ourselves to the per-
turbation of the WS-integrability that includes two lin-
early independent second-order Fourier modes in the
on-site dynamics: we consider the model

φ̇j = ω − sin φj + εs sin 2φj + εc cos 2φj

+
κ

N

N∑

k=1

sin(φk − φj). (7)

Let the vector ε = (εs, εc) parameterize the perturba-
tion. At εc = 0, Eq. (7) turns into the model (5); there-
fore, ε1 = (εs, 0) yields stable periodic 2-cluster solu-
tions for small negative εs and unstable ones for small
εs > 0, while for splay states, the opposite holds. Simi-
lar behavior has been found for ε2 = (0, εc) when εc has
been varied. This suggests that if both εs and εc have
the same sign, the stabilizing or destabilizing effects of
both perturbation terms sum up. On the other hand,
a change of stability for given ω and κ must occur for
some εs ·εc < 0. We take an exemplary path that, on the
plane spanned by εs and εc, which connects by a straight
line the points ε1 = (1/20, 0) and ε2 = (0,−1/20):
Γ (s) = sε1 + (1 − s)ε2. The path avoids 0.

Along the exemplary path, the splay state changes
stability at some s1 ∈ (0, 1), while the 2-cluster state
changes stability at some s2 ∈ (0, 1). In case of the 2-
cluster states, s2 does not depend on N [7]. For splay
states, dependence of s1 on N is less transparent, and
we restrict ourselves to N = 4: the minimal ensemble
size that allows both the 2-cluster solutions and the
splay states.

As expected, we observe that stability is transferred
between the splay state and the 2-cluster oscillatory

state via the via the mediation of periodic solutions
with broken symmetry.

To understand these scenarios, we note that, as long
as the path Γ lies sufficiently close to 0, hyperbolic-
ity of the invariant manifold M guarantees that the
dynamics essentially takes place on M for all Γ (s).
Indeed, broken symmetry states are elements of the
ensemble of continuous orbits at 0 and so are natural
candidates for persistent states. Within this picture, M
apparently always contains splay and 2-cluster states as
closed orbits, while for suitable paths through H, addi-
tional periodic orbits must detach and merge again with
them. By symmetry, these orbits must always emerge
pairwise, in full accordance to the numerical evidence.

For N = 4, the broken symmetry orbits of period
T (ω, γ, κ) can be characterized as follows: in contrast to
a 2-cluster state in which the ensemble is comprised of
two clusters A and B with, e.g., φ1(t) = φ2(t) = φA(t)
and φ3(t) = φ4(t) = φB(t) where φA(t) = φB(t + T/2);
we now have φ1,2(t) = φA(t ± Δt/2) and φ3,4(t) =
φB(t ± Δt/2). In other words, the broken symmetry
state is comprised of two groups of two units each. The
groups are still separated by the half-period in time,
whereas units inside them are separated by some time
difference Δt in their evolution. Increase of Δt from 0
(at the first pitchfork) to T/4 (by the time of the second
pitchfork) transforms the broken symmetry state con-
tinuously from the pure 2-cluster state into the pure
splay state.

5 Ensembles of Morris–Lecar neurons

The well-known formalism of Kuramoto [21] allows to
reduce dynamics in a set of weakly coupled oscillators to
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I

Fig. 2 Existence and stability of splay states and peri-
odic 2-cluster states for Eq. (7) with ω = 0.6 and N = 4
along the path Γ (s) = sε1 + (1 − s)ε2. In Region I, nei-
ther splay states nor periodic 2-cluster states exist. Splay
states emerge via the transcritical heteroclinic bifurcation
of the collective state of rest at the left border of Region
I. Periodic 2-cluster states emerge in double saddle-node
homoclinic bifurcations at the left borders of Regions II
and VI, respectively. In the Regions III and VI, splay states
are stable, while 2-cluster states are either unstable (Region
III) or non-existent (Region VI). At the border between the
Regions III and IV, respectively, the Regions II and VI, the
splay states lose stability in supercritical pitchfork bifurca-
tions from which pairs of stable states with broken symme-
try emerge. These broken symmetry states either disappear
in a further supercritical pitchfork with the 2-cluster states
([cf. (a) in Fig. 1] at the border between the Regions IV and
V, or, instead, vanish in the saddle-node bifurcations with
additional unstable states with broken symmetry at the bor-
der between the Regions IV and VII. The latter states are
born in subcritical pitchforks of the 2-cluster states at the
border between the Regions V and VII; they exist only in
the Region VII [cf. (b) in Fig. 1]. At the point in which the
Regions IV, V, and VII meet, the pitchfork bifurcation of
the 2-cluster states changes its type from sub- to supercriti-
cal. The overall result is a transfer of stability between splay
states and periodic 2-cluster states

the phase description; dynamics of the ensemble is ade-
quately reproduced by an appropriate set of phase oscil-
lators. This approach works regardless of the dimension
of the phase space of the individual oscillator, provided
that there is a timescale separation between one slow
variable (phase) and the remaining fast ones (ampli-
tude). While (class I) excitable units lack an intrinsic
phase, since they do not oscillate on their own, one
might expect a similar connection to hold between the
class I excitable units and the active rotators provided
that the invariant circle for the single excitable unit
is normally hyperbolic. Hence, for suitably small cou-
pling strengths, a similar reduction to phase-like vari-
ables yields a system, akin to (3), which for small |ε|
would give rise to an invariant manifold M, together
with embedded periodic orbits.

It is therefore reasonable to look in ensembles of
higher dimensional excitable units for collective states

and transitions, similar to the ones, described in Sect. 4.
Here, we take as an example the ensemble of the so-
called Morris—Lecar neurons.

The Morris–Lecar model was originally introduced
to describe neuro-physiological properties of giant bar-
nacle muscle fibers [10]. It characterizes the properties
of the cell in terms of the membrane voltage V of the
fiber together with the normalized conductance w of
the cell membrane for K+–ions which acts as a slow
recovery variable. In the context of our studies, the
Morris–Lecar model is of particular interest, because
its parameters can be tuned to yield class I excitability.
Our set of parameters, shown in Table 1, is a varia-
tion of the standard choice from [22]. For our purposes,
we consider a system of N = 4 Morris–Lecar neurons,
coupled all-to-all via their respective mutual differences
in the membrane voltages Vi. The governing equations
read

C V̇i = gCa n∞(Vi) · (VCa − Vi) − gK wi · (VK + Vi)
(8)

− gL · (VL + Vi) + Iapp +
κ

N

N∑

j=1

(Vj − Vi)

ẇi = λ(Vi) · (w∞(Vi) − wi) , (9)

where n∞(V ) = 1
2

(
1 + tanh V −Va

Vb

)
and w∞(V ) =

1
2

(
1 + tanh V −Vc

Vd

)
describe the ratio of open Ca2+–ion

channels and the voltage-dependent maximum ratio of
K+-ion channels, respectively. While the former chan-
nels react to voltage changes instantaneously, the latter
have finite V -dependent inverse recovery time λ(V ) =
λ0 cosh V −Vc

Ve
.

The perturbation terms in (3) act on the second-order
or higher order Fourier modes of the on-site dynamics
while leaving the zeroth- and first-order term invariant
along the path Γ (s), with s ∈ [0, 1]. One can achieve a
somewhat similar behavior for the ensemble of Morris–
Lecar neurons by scaling the conductances gCa, gK, and
gL by a common factor (1 + s), i.e., gx �→ (1 + s) · gx.
This rescaling on its own affects all terms in the Taylor
expansion of the r.h.s. of (8) V̇j = −a0 +a1Vj +O(V 2

j ).
However, the current I only enters the term a0 and can
be absorbed by a suitable rescaling of the Vi. Hence, if
we rescale Vj , such that V̇j = a0(s, I)) + Vj + O(Vj),
we can always choose I, such that a0 is constant along
Γ . The necessary condition for this is that the ratio
of coefficients a0/a1 is kept constant which yields the
relation

1
γ I − gLVL − 1

2gCaVCa

(
tanh V1

V2
− 1

)

−gL + 1
2gCa

(
tanh V1

V2
− 1 + VCa

V2

(
1 − tanh V1

V2

)
tanh V1

V2

)

= const, (10)

through which the appropriate value of I is determined.
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Fig. 3 Existence and stability of splay and periodic 2-
cluster states for N = 4 globally coupled Morris–Lecar neu-
rons (8) and (9). In Region I, neither splay states nor peri-
odic 2-cluster states exist. The splay states exist to the left of
the border between the Regions II and IV and to the left of
the border between V and VI. The periodic 2-cluster states
emerge at the left border of the Region I. In the Region III,
the splay states are unstable, while 2-cluster states are sta-
ble. At the border between III and IV, the splay states get
stabilized by a subcritical pitchfork in which two unstable
broken symmetry states emerge and persist in the Regions
IV and II. At the borders between the Regions IV and V as
well as between the Regions II and VI, these broken symme-
try states vanish in another subcritical pitchfork with the
periodic 2-cluster state, rendering the latter unstable in the
Regions V and VI, whereas it is stable in the Regions II,
III, and IV. This corresponds to the bifurcation scenario,
sketched in the (c) of Fig. 1. The 2-cluster states emerge
in heteroclinic bifurcations to the left from the Region I,
whereas the splay states exist in the Regions III, IV, and V.
The result is a transfer of instability between splay states
and periodic 2-cluster states

Varying s and κ, we look again at the existence
of the splay and 2-cluster states and at the trans-
fer of stability between them. Results are depicted in
Fig. 3.

It turns out that the ensemble of Morris–Lecar neu-
rons at these parameter values is, in a sense, comple-
mentary to the model of phase oscillators discussed in
the preceding section: whereas the bifurcation scenar-
ios in the phase model match the panels (a) and (b)
in Fig. 1, bifurcations in the Morris–Lecar ensemble
correspond to the scenario sketched in panel (c). For
both types of the basic temporal patterns, the clus-
tered states and the splay, the pitchfork bifurcations are
subcritical. Therefore, the states with broken symme-
try transfer not stability but, rather, instability between
them. Altogether, these numerical findings further sup-
port the assertion that the results from the phase model
(5) generalize to systems of higher dimensional class I
excitable units.

6 Conclusions

One of the key concepts in the description of neu-
rons is excitability. Class I excitability translates to a
dynamical system, being close to a saddle-node homo-
clinic bifurcation. The arguably simplest dynamical sys-
tem which possesses this feature is the active rotator.
Ensembles of identical active rotators, sinusoidally cou-
pled all-to-all can, for sufficiently repulsive coupling,
yield oscillatory ensemble dynamics.

In this work, we reviewed previous results concern-
ing two important types of generic collective oscillatory
solutions: the splay states and the periodic 2-cluster
states. The former is characterized by its constituents
being equally staggered in time, while in the latter case,
the ensemble splits into two distinct clusters, which
are then equally staggered in time. In the general con-
text of coupled oscillators, transitions between the splay
and clustered states have been studied, e.g., in [23]
for delay coupled Stuart–Landau oscillators, as well
as in [24] for oscillators with adaptive coupling coef-
ficients. As we have seen above, clustered oscillations
and splays in ensembles of globally coupled active rota-
tors have their peculiarities. While splay states or clus-
tered variations thereof emerge in a transcritical hete-
roclinic bifurcation, 2-cluster states are born in global
bifurcations involving pairs of 2-cluster states of equi-
librium. Respective stabilities of these two states are
closely related. Varying system parameters, both peri-
odic states switch their stability simultaneously if, at
the transition, the system becomes Watanabe–Strogatz
integrable. The underlying reason for this is that both
orbits lie within a stable invariant manifold that, at the
point of integrability, is comprised of a continuous fam-
ily of periodic orbits. If the system is not integrable,
dynamics on the manifold look like a spiraling motion
towards one of the persistent periodic orbits. Under a
generic variation of parameters, the system does not
become integrable, but periodic orbits still exchange
their stability. We have illustrated how the transfer of
stability between 2-cluster and splay states is mediated
by periodic states with broken symmetry. These bro-
ken symmetry states emerge in pitchfork bifurcations
involving either the splay or the 2-cluster states. The
result is a generic local exchange of stability instead of
the unconventional non-local one.

The fact that ensembles of voltage-coupled Morris–
Lecar neurons essentially show the same bifurcation sce-
narios allows us to suggest that this transfer of stabil-
ity is a generic feature of similar ensembles of class I
excitable units.

The two discussed types of periodic orbits are nei-
ther the only possible periodic solutions for systems of
coupled excitable units, nor the only possible attrac-
tors. Nevertheless, many of these other possibly stable
candidates can be understood as “imperfect” variations
of splay or 2-cluster states, i.e., as solutions where the
clusters are not of exactly equal size. For an imperfect
realization of a splay, the time intervals for two consec-
utive clusters to make a turn around the circle are not
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Table 1 Parameters of the Morris–Lecar model that yield class I excitability

C λ0 gCa VCa gL VL gK VK Va Vb Vc Vd Ve

1 1/3 1 1 0.5 0.4 2 0.7 –0.01 0.15 0.1 0.145 0.2

identical anymore. However, as long as the variation in
cluster size is small, these states are comparable in their
properties to real clustered splay states.

Stability of imperfect periodic 2-cluster states for the
phase model can be understood in terms of Watanabe–
Strogatz integrability. We have shown that for every
WS-integrable model, such states always consist of one
stable and one unstable cluster. Perturbations that
make the system non-integrable inherit this property as
long as the perturbation is small. This, further, results
for sufficiently large N in the nested pattern of sta-
bility regions in the parameter space [7]. Additionally,
this implies that these imperfect 2-cluster states are not
embedded in the invariant manifold that, in the inte-
grable case, consists of the continuum of periodic orbits.

Our analysis has been restricted to purely sinusoidal
coupling between the identical units in the ensemble. In
general, introduction of higher Fourier harmonics into
the coupling disables the Watanabe–Strogatz dynam-
ics [9] (save for the cases the where every unit couples
solely to all global fields by a single higher harmonic
[25,26]). In contrast, structurally stable solutions, like
the splay states and the clustered oscillations survive
modification of the coupling, and the discussed scenar-
ios of stability transfer between them stay relevant also
for non-sinusoidal interaction
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4. D. Pazó, E. Montbrió, Phys. Rev. E 73, 055202(R)
(2006)

5. E. Teichmann, M. Rosenblum, Chaos 29, 093124 (2019)
6. M.A. Zaks, P. Tomov, Phys. Rev. E 93, 020201(R)

(2016)
7. R. Ronge, M.A. Zaks, Phys. Rev. E 103, 012206 (2021)
8. S. Watanabe, S.H. Strogatz, Physica D 74, 197–253

(1994)
9. S.A. Marvel, R.E. Mirollo, S.H. Strogatz, Chaos 19,

043104 (2009)
10. C. Morris, H. Lecar, Biophys. J. 35, 193–213 (1981)
11. S. Shinomoto, Y. Kuramoto, Prog. Theoret. Phys. 75,

1105–1110 (1986)
12. I. Franovic, S. Yanchuk, S. Eidam, I. Bacic, M. Wolfrum,

Chaos 30, 083109 (2020)
13. C. Kurrer, K. Schulten, Phys. Rev. E 51, 6213–6218

(1995)
14. M.A. Zaks, A.B. Neiman, S. Feistel, L. Schimansky-

Geier, Phys. Rev. E 68, 066206 (2003)
15. C.J. Tessone, A. Scire, R. Toral, P. Colet, Phys. Rev. E

75, 016203 (2007)
16. B. Sonnenschein, M.A. Zaks, A.B. Neiman,

L. Schimansky-Geier, Eur. Phys. J. ST 222, 2517–2529
(2013)

17. M. Dipoppa, M. Krupa, A. Torcini, B.S. Gutkin, SIAM
J. Appl. Dyn. Syst. 11, 864–894 (2012)
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