Skip to main content
Log in

Modeling and characterizing stochastic neurons based on in vitro voltage-dependent spike probability functions

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Neurons in the nervous system are submitted to distinct sources of noise, such as ionic-channel and synaptic noise, which introduces variability in their responses to repeated presentations of identical stimuli. This motivates the use of stochastic models to describe neuronal behavior. In this work, we characterize an intrinsically stochastic neuron model based on a voltage-dependent spike probability function. We determine the effect of the intrinsic noise in single neurons by measuring the spike time reliability and study the stochastic resonance phenomenon. The model was able to show increased reliability for non-zero intrinsic noise values, according to what is known from the literature, and the addition of intrinsic stochasticity in it enhanced the region in which stochastic-resonance is present. We proceeded to the study at the network level where we investigated the behavior of a random network composed of stochastic neurons. In this case, the addition of an extra dimension, represented by the intrinsic noise, revealed dynamic states of the system that could not be found otherwise. Finally, we propose a method to estimate the spike probability curve from in vitro electrophysiological data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository.

References

  1. S. Herculano-Houzel, K. Catania, P.R. Manger, J.H. Kaas, Brain Behav. Evol. 86, 145–163 (2015)

    Article  Google Scholar 

  2. P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C.J. Honey, V.J. Wedeen, O. Sporns, PLoS Biol. 6, e159 (2008)

    Article  Google Scholar 

  3. A.A. Faisal, L.P.J. Selen, D.M. Wolpert, Nat. Rev. Neurosci. 9, 292 (2008)

    Article  Google Scholar 

  4. J.A. Movshon, Neuron 27, 412–414 (2000)

    Article  Google Scholar 

  5. J.A. White, J.T. Rubinstein, A.R. Kay, Trends Neurosci. 23, 131–137 (2000)

    Article  Google Scholar 

  6. M. Girardi-Schappo, O. Kinouchi, M.H.R. Tragtenberg, Phys. Rev. E 88, 024701 (2013)

    Article  ADS  Google Scholar 

  7. A. Destexhe, M. Rudolph-Lilith, Neuronal Noise (Springer, Berlin, 2012)

    Book  MATH  Google Scholar 

  8. R.F.O. Pena, M.A. Zaks, A.C. Roque, J. Comput. Neurosci. 45, 1–28 (2018)

    Article  MathSciNet  Google Scholar 

  9. A. Destexhe, D. Paré, J. Neurophysiol. 81, 1531–1547 (1999)

    Article  Google Scholar 

  10. M. London, A. Roth, L. Beeren, M. Häusser, P.E. Latham, Nature 466, 123–127 (2010)

    Article  ADS  Google Scholar 

  11. R.V. Nunes, M.B. Reyes, R.Y. de Camargo, Biol. Cybern. 113, 309–320 (2019)

    Article  Google Scholar 

  12. R. Brette, E. Guigon, Neural Comput. 15, 279–308 (2003)

    Article  Google Scholar 

  13. G.B. Ermentrout, R.F. Galán, N.N. Urban, Trends Neurosci. 31, 428–434 (2008)

    Article  Google Scholar 

  14. P.N. Steinmetz, A. Manwani, C. Koch, M. London, I. Segev, J. Comput. Neurosci. 9, 133–148 (2000)

    Article  Google Scholar 

  15. G.A. Jacobson, K. Diba, A. Yaron-Jakoubovitch, Y. Oz, C. Koch, I. Segev, Y. Yarom, J. Physiol. 564, 145–160 (2005)

    Article  Google Scholar 

  16. P.R. Protachevicz, M.S. Santos, E.G. Seifert, E.C. Gabrick, F.S. Borges, R.R. Borges, J. Trobia, J.D. Szezech Jr, K.C. Iarosz, I.L. Caldas, C.G. Antonopoulos, Y. Xu, R.L. Viana, A.M. Batista, arXiv preprint, (2020) arXiv:2005.14597

  17. F.J. Sigworth, J. Physiol. 307, 97–129 (1980)

    Article  Google Scholar 

  18. R. Azous, C.M. Gray, J. Neurosci. 19, 2209–2223 (1999)

    Article  Google Scholar 

  19. C.C. Chow, J.A. White, Biophys. J. 71, 3013–3021 (1996)

    Article  ADS  Google Scholar 

  20. S.B. Laughlin, R.R.R. van Steveninck, J.C. Anderson, Nat. Neurosci. 1, 36–41 (1998)

    Article  Google Scholar 

  21. D. Attwell, S.B. Laughlin, J. Cerebr, Blood F. Met. 21, 1133–1145 (2001)

    Article  Google Scholar 

  22. Z.F. Mainen, T.J. Sejnowski, Science 268, 1503–1506 (1995)

    Article  ADS  Google Scholar 

  23. C.F. Stevens, A.M. Zador, Nat. Neurosci. 1, 210–217 (1998)

    Article  Google Scholar 

  24. G.T. Buracas, A.M. Zador, M.R. DeWeese, T.D. Albright, Neuron 20, 959–969 (1998)

    Article  Google Scholar 

  25. R.B. Stein, E.R. Gossen, K.E. Jones, Nat. Rev. Neurosci. 6, 389–397 (2005)

    Article  Google Scholar 

  26. M.D. McDonnel, L.M. Ward, Nat. Rev. Neurosci. 12, 415–425 (2011)

    Article  Google Scholar 

  27. E. Schneidman, B. Freedman, I. Segev, Neural Comput. 10, 1679–1703 (1998)

  28. J.A. White, R. Klink, A. Alonso, A.R. Kay, J. Neurophysiol. 80, 262–269 (1998)

    Article  Google Scholar 

  29. H.A. Braun, H. Wissing, K. Schäfer, M.C. Hirsch, Nature 367, 270–273 (1994)

    Article  ADS  Google Scholar 

  30. H.A. Braun, K. Schäfer, K. Voigt, R. Peters, F. Bretschneider, X. Pei, L. Wilkens, F. Moss, J. Comput. Neurosci. 4, 335–347 (1997)

  31. A.D. Dorval, J.A. White, J. Neurosci. 25, 10025–10028 (2005)

    Article  Google Scholar 

  32. M.D. McDonnell, D. Abbott, PLoS Comput. Biol. 5, e1000348 (2009)

    Article  ADS  Google Scholar 

  33. M.I. Dykman, P.V.E. McClintock, Nature 391, 344 (1998)

    Article  ADS  Google Scholar 

  34. R.J. Douglas, K.A.C. Martin, Annu. Rev. Neurosci. 27, 419–451 (2004)

    Article  Google Scholar 

  35. L.M. Ward, S.E. MacLean, A. Kirschner, PLoS One 5, e14371 (2010)

    Article  ADS  Google Scholar 

  36. N.G. Stocks, R. Mannella, Phys. Rev. E 64, 030902 (2001)

    Article  ADS  Google Scholar 

  37. B.A. Schmerl, M.D. McDOnnell, Phys. Rev. E 88, 052722 (2013)

    Article  ADS  Google Scholar 

  38. W. Gerstner, W.M. Kistler, Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition (Cambridge University Press, Cambridge, 2014)

    Book  Google Scholar 

  39. H.E. Plesser, W. Gerstner, Neurocomputer 32, 219–224 (2000)

    Article  Google Scholar 

  40. A. Galves, E. Löcherbach, J. Stat. Phys. 151, 896–921 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  41. L. Brochini, A.A. Costa, M. Abadi, A.C. Roque, J. Stolfi, O. Kinouchi, Sci. Rep. 6, 35831 (2016)

    Article  ADS  Google Scholar 

  42. R. Jolivet, A. Rauch, H.R. Lüscher, W. Gerstner, J. Comput. Neurosci. 21, 35–49 (2006)

    Article  MathSciNet  Google Scholar 

  43. N. Brunel, J. Comput. Neurosci. 8, 183–208 (2000)

    Article  Google Scholar 

  44. D.H. Perkel, G.L. Gerstein, G.P. Moore, Biophysics 7, 391–418 (1967)

    Google Scholar 

  45. D.F.M. Goodman, R. Brette, Front. Neurosci. 3, 26 (2009)

    Article  Google Scholar 

  46. J.P. Lachaux, E. Rodriguez, J. Martinerie, F.J. Varela, Hum. Brain. Mapp. 8, 194–208 (1999)

    Article  Google Scholar 

  47. P. Celka, IEEE Signal Proc. Lett. 14, 577–580 (2007)

    Article  ADS  Google Scholar 

  48. M. Rosenblum, A. Pikovsky, J. Kurths, C. Schäfer, P.A. Tass, Handbook of Biological Physics (Elsevier, Oxford, 2001), pp. 279–321

    Google Scholar 

  49. S. Aydore, D. Pantazis, R.M. Leahy, NeuroImage 74, 231–244 (2013)

    Article  Google Scholar 

  50. E. Lowet, M.J. Roberts, P. Bonizzi, J. Karel, P.D. Weerd, PLoS One 11, e0146443 (2016)

    Article  Google Scholar 

  51. F. Gabbiani, C. Koch, Methods Neuronal. Model. 12, 313–360 (1998)

    Google Scholar 

  52. S.M. Bezrukov, I. Vodyanoy, Nature 378, 362–364 (1995)

    Article  ADS  Google Scholar 

  53. J. Platkiewicz, R. Brette, PLoS Comput. Biol. 6, e1000850 (2010)

    Article  ADS  Google Scholar 

  54. M. Sekerli, C.A. Del Negro, R.H. Lee, R.J. Butera, IEEE T. Bio-Med Eng. 51, 1665–1672 (2004)

    Article  Google Scholar 

  55. P. Tomov, R.F.O. Pena, M.A. Zaks, A.C. Roque, Front. Comput. Neurosci. 8, 103 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This article was produced as part of the IRTG 1740/TRP 2011/50151-0, funded by the DFG/FAPESP. It was also supported partially by the S. Paulo Research Foundation (FAPESP) Research, Innovation and Dissemination Center for Neuromathematics (CEPID NeuroMat, Grant No. 2013/07699-0). The authors also thank FAPESP support through Grants nos. 2013/25667-8 (R.F.O.P.), 2015/50122-0 (A.C.R.), 2016/03855-5 (N.L.K.), 2017/07688-9 (R.O.S), 2017/18977-1 (F.S.B), 2018/20277-0 (A.C.R.), and 2019/14962-5 (R.P). V.L. and C.C.C. were supported by a CAPES PhD scholarship. A.C.R. thanks financial support from the National Council of Scientific and Technological Development (CNPq), Grant No. 306251/2014-0. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)-Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

VL, RFOP, ROS, NLK, CCC, and ACR: conceived the work; VL, RFOP, ROS, CCC, and NLK: work on model implementation, simulation, and theoretical analysis VL, RFOP, ROS, NLK, CCC, and ACR: wrote the manuscript; FSB, GSVH, RP, collected and provided the data used in the study. All authors read, reviewed, and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Vinicius Lima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, V., Pena, R.F.O., Shimoura, R.O. et al. Modeling and characterizing stochastic neurons based on in vitro voltage-dependent spike probability functions. Eur. Phys. J. Spec. Top. 230, 2963–2972 (2021). https://doi.org/10.1140/epjs/s11734-021-00160-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00160-7

Navigation