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Abstract Partial synchronous states appear between full synchrony and asynchrony and exhibit many
interesting properties. Most frequently, these states are studied within the framework of phase approxima-
tion. The latter is used ubiquitously to analyze coupled oscillatory systems. Typically, the phase dynamics
description is obtained in the weak coupling limit, i.e., in the first-order in the coupling strength. The
extension beyond the first-order represents an unsolved problem and is an active area of research. In this
paper, three partially synchronous states are investigated and presented in order of increasing complexity.
First, the usage of the phase response curve for the description of macroscopic oscillators is analyzed. To
achieve this, the response of the mean-field oscillations in a model of all-to-all coupled limit-cycle oscillators
to pulse stimulation is measured. The next part treats a two-group Kuramoto model, where the interac-
tion of one attractive and one repulsive group results in an interesting solitary state, situated between full
synchrony and self-consistent partial synchrony. In the last part, the phase dynamics of a relatively simple
system of three Stuart-Landau oscillators are extended beyond the weak coupling limit. The resulting
model contains triplet terms in the high-order phase approximation, though the structural connections are
only pairwise. Finally, the scaling of the new terms with the coupling is analyzed.

1 Introduction

Some of the first observations of the phenomenon of
synchronization have been made in the late seventeenth
century. The Dutch physician Kaempfer observed a
swarm of fireflies in Asia and noted their rhythmic flash-
ing; their lights appeared in a regular interval all over
the whole swarm [1]. Some years earlier, the Dutch
physicist Huygens already noted that two pendulum
clocks, fastened to the same beam, always swung in
opposite directions, regardless of where and how he
released them [2].

Despite essential progress, synchronization remains a
topic of active research. In particular, many studies are
devoted to the investigation of different partially syn-
chronous states. Partial synchrony describes the state
between full synchrony and asynchrony, where not all
phases or frequencies are equal. In most systems, par-
tial synchrony exists in the biggest part of the parame-
ter space, making it an important topic to study. Some
interesting realizations of partial synchronous states are
the chimera [3], Bellerophon [4], traveling wave [5], or
solitary state [6].

The study of self-sustained oscillations has become
an important tool to describe phenomenons as diverse
as the common movement of pedestrians on a bridge

a e-mail: kontakt.teichmann@gmail.com (corresponding
author)

[7], the heart beat [8] or the motion of a fish swarm [9]
and their synchronization properties. The application
to neuroscience, where oscillatory behavior determines
the dynamics in the brain [10–12], is of special interest.

Self-sustained oscillators are well understood, but a
quantitative analysis of systems of coupled oscillators
is generally hard. The description of oscillatory sys-
tems can consist of numerous coupled differential equa-
tions containing nonlinear terms and only allows for
approximate or qualitative analysis in most cases. One
way to reduce the complexity is phase reduction, which
describes every single oscillatory unit with one one-
dimensional variable, thereby reducing the problem’s
dimensionality.

The phase reduction of a single oscillator is known
analytically only for a few types. Even for these types of
oscillators, coupled units’ dynamics are typically only
available in the weak coupling limit, i.e., in the first
order of the coupling strength. Methods for finding
the phase dynamics for stronger couplings are either
restricted to coupling functions with a specific property
[13] or to specific systems [14].

While the first-order phase approximation of pairwise
coupled oscillators yields only terms depending on two
phases, beyond the weak coupling limit, generally terms
depending on several phases appear. Some of these new
terms are triplet terms or non-structural terms, i.e.,
connections not present in the coupling scheme [14,15].
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These are often reconstructed numerically but are seen
as spurious terms or correlations.

In this minireview, I summarize the current state of
research for my Ph.D. thesis by analyzing three cases
of partial synchrony with the help of phase dynamics
in increasing levels of complexity. In the first level in
Sect. 2.1, the macroscopic phase dynamics of a com-
plex mean-field oscillator, generated by the collective
dynamics of the single units, is investigated. The novel
results about the direct extension of the phase from
a single oscillator to an ensemble of oscillators are
shown via the collective phase response curve (PRC)
for the mean-field. It measures the mean-field’s reac-
tion to a perturbation of the oscillators in the first order
of the perturbation strength and is applied to coupled
Rayleigh oscillators. In the second level, a more sophis-
ticated approach, the weak coupling limit, is used to
describe the phases of the units in the first order of
the coupling strength. In the Kuramoto model [16],
this approach is used widely to investigate synchro-
nization. Here it is applied to two groups of oscilla-
tors, one attractive and one repulsive, to investigate an
interesting solitary state in Sect. 3.1, and summarizes
the paper [17]. Finally, in Sect. 3.2, the phase reduc-
tion is expanded past the weak coupling limit, as the
third level of complexity, in a system of Stuart-Landau
oscillators using a perturbation method, as described
in [18]. This approach reveals additional terms in the
phase model. For example, triplet terms appear for pair-
wise coupled oscillators.

2 Phase dynamics

Phase dynamics are defined for an oscillatory dynamical
system of arbitrary dimension

dy

dt
= f(y), (1)

with a stable limit cycle of period T in the state space
Y (t + T ) = Y (t). On this limit cycle, and in its basin of
attraction, a phase ϕ = Φ(y) can be defined that iden-
tifies the state uniquely and grows uniformly in time
by

ϕ̇ = ω =
∂Φ
∂y

f(y), (2)

with a frequency of ω = 2π
T [2]. This phase reduces the

dimensionality of the dynamics to just one. For most
types of oscillators the phase dynamics are not known
analytically and have to be reconstructed numerically.

In Eq. (2) only the autonomous dynamics are con-
sidered. In the case of a weak perturbation the phase
instead evolves according to the Winfree Eq. [19] in the
first order of the perturbation strength P . With the
PRC Δ and the perturbation p it reads

ϕ̇ = ω + Δ(ϕ)p(t) + O(P 2) . (3)

The PRC Δ describes the phase change depending
on the current phase. It is also an important tool in
describing the system beyond the phase dynamics, as
its form gives information about the stability and syn-
chronization properties of the system [20].

2.1 Phase dynamics of a macroscopic
oscillator—rayleigh model

A natural extension of the PRC in the case of mul-
tiple oscillators is the collective PRC, which describes
the reaction of a whole ensemble of N oscillators to
a perturbation. Their dynamics are measured by their
average, the mean-field Z = 1/N

∑
j yj . For a strong

enough coupling, the mean-field will also move on a
limit cycle, and a perturbation of the oscillators will
lead to a deviation from its stable trajectory. This
means the mean-field can be seen as a complex oscil-
lator, as demonstrated for the brain rhythm in exper-
iments with rats [21]. From the reaction of the mean-
field oscillator, it is even possible to gain information
about the PRC of single oscillators [22].

Whereas the PRC Δ describes the complete reac-
tion to a perturbation, the collective PRC can be split
into two parts. The prompt PRC Δ0 is the immedi-
ate reaction of the mean-field and the relaxation PRC
Δr the part that describes the relaxation of the oscilla-
tors after the perturbation and the resulting change in
their distribution. Together these form the final PRC
Δf [23,24]. Formally this can be written as

Δ0(ϕ0) = ϕ̄0 − ϕ0 , (4)
Δf (ϕ0) = lim

t→∞(ϕ̄(t − τ) − ϕ(t − τ))

= Δ0(ϕ0) + lim
t→∞ Δr(ϕ0, t − τ) , (5)

where τ is the time of the perturbation, ϕ0 is the phase
at the time of perturbation of the unperturbed system
and ϕ̄ the phase in the perturbed system. Because there
does not exist a general way to describe the dynamics
of the mean-field, the collective PRC and its parts have
to be calculated numerically.

Numerically the collective PRC is found by measur-
ing the change in the k-th period of the mean-field after
the perturbation T̄k and the unperturbed period T as

ΔN (ϕ0) = 2π
N∑

j=1

T − T̄k

T
. (6)

After a sufficiently long time this will approach the final
PRC in Eq. (5).

Consider a system of N coupled Rayleigh oscillators
[25] with the dynamics

ẍk − η(1 − ẋ2
k)ẋk + ω2

kxk = ε(Ẋ − ẋk) . (7)

The η is a nonlinearity parameter, ε the coupling
strength and Ẋ = 1/N

∑
j ẋj . The natural frequencies

123



Eur. Phys. J. Spec. Top. (2021) 230:2833–2842 2835

0 1 2 3 4 5 6
ϕ0

−1

0

1

Δ
10

0/
P

(a)

0 5 10 15
t

0.0

0.5

R

tsync

(b)

0.0 0.1 0.2
ε

0

1

R

(c)

500

750

t

Fig. 1 The collective PRC Δ100 for the Rayleigh model
in Eq. (7) with perturbation strength P is shown in (a).
The black dots mark the PRC of the single oscillator
and the lines the numerically measured values for ε ∈
{0.134, 0.336, 0.538, 0.74, 0.942}, where the collective PRC
approaches the single oscillator PRC with increasing ε. In
(b) the method for the calculation of the synchronization
time tsync is visualized. The timescales for the synchroniza-
tion and the relaxation are shown in (c). The black dots
denote the magnitude of the limit cycle at the crossing of
the positive ẋ-axis, the green crosses tsync and the red trian-
gles trelax. The necessary ε for a stable limit cycle is marked
with a black line

ωk are distributed according to a Gaussian distribution
with mean 1 and standard deviation 0.01. For η = 6
and N = 500 this system has a stable limit cycle of
the mean-field for ε � 0.134 and is in the partial syn-
chronous regime.

The oscillators are perturbed simultaneously in the
ẋ-direction with a small enough strength P , such that
the collective PRC scales linearly with P and Eq. (3) is
valid. The resulting response of the mean-field is shown
in Fig. 1a. While the collective PRC is flat for small ε, it
approaches the PRC of a single oscillator with increas-
ing coupling strength. The approach to the PRC of a
single oscillator is the expected outcome, as in the case
of ε → ∞, the oscillators will be fully synchronized and
behave like a single unit.

An important property of the collective PRC is the
needed relaxation time trelax, as the application to real-
world noisy systems becomes impossible if it is too
long. When the oscillators are perturbed strongly before
they fully relax, then the mean-field will not reach its
limit cycle, and the phase dynamics in Eq. (3) are not
applicable. To have a comparable timescale consider
the synchronization time tsync in Fig. 1b. It is mea-
sured as a linear approximation of the time needed
to reach the stable distribution of oscillators, given by
R = |Z| ≈ const, from a splay state, where all oscilla-
tors are distributed uniformly in the phase. The slope
for the linear approximation is chosen as the value at
the inflection point, i.e., the biggest Ṙ. A compari-
son of the time scales in Fig. 1c shows that trelax (at
about 40T ) is longer than tsync. This suggests a very
weak attraction to the stable distribution. The collec-
tive PRC can thus be only applied in an approximate
sense.

3 Phase dynamics of coupled oscillators

After investigating the phase dynamics under the influ-
ence of a perturbation, the next step of abstraction is
the application of phase dynamics to coupled oscilla-
tors. Instead of the mean-field, the interest lies now
on the single oscillatory units and their phases. The
dynamics of coupled oscillators with coupling function
Gk for oscillator k and coupling strength ε are

dyk

dt
= fk(yk) + εGk(y1,y2, . . .) . (8)

The phase dynamics for such a system are given anal-
ogous to Eq. (2) with ϕk = Φk(yk) as

ϕ̇k = ωk + ε
∂Φk

∂yk

Gk(y1,y2, . . .) . (9)

In this case, the phase does not grow uniformly. While it
could be found on the limit cycle by virtue of the period,
now the phases of all points in the state space have to
be known to solve the coupling term. With the approx-
imation of weak coupling, the dynamics stay close to
the limit cycle of the uncoupled unit and the phases in
this region are known, so the coupling function can be
written in terms of these phases

ϕ̇k = ωk + εGk(ϕk, ϕ1, ϕ2, . . .) + O(ε2) . (10)

Higher-order approximations have to be considered
to extend the phase dynamics farther past the limit
cycle, for example, when considering higher coupling
strengths.

Some methods for analytical phase reduction of
higher-order consider systems with a separation of
timescales [13,26] or use isostable coordinates [27]. A
general method that only works for systems with a
known phase in the autonomous systems uses a per-
turbation Ansatz on the isochrones [14]. To reconstruct
the phase dynamics numerically, one typically uses a
Fourier series to represent the coupling function and
then fits the coefficients using, e.g., a multiple shot
[28] or Bayesian methods [29]. Other numerical reduc-
tions include reconstruction of the phase from a polar
phase that is determined by a Hilbert transformation
[30,31] or directly with an iterative Hilbert transform
[32]. Some improvements can be made by using abso-
lute phases in the coupling function instead of phase
differences [33] or considering triplets of oscillators to
find structural connectivity [34].

3.1 Weakly coupled oscillators—Kuramoto model

The Kuramoto model [35,36] describes a weakly pair-
wise all-to-all coupled system of oscillators. The first
order approximation in Eq. (10) is valid and the dynam-
ics can be written as
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ϕ̇k = ωk +
ε

N

N∑

j=1

sin(ϕj − ϕk + αk) . (11)

The ωk are the natural frequencies and the αk the phase
shift parameters.

By using the complex mean-field Z = Reiθ = 1/
N

∑
j eiϕj the system can be reduced to

ϕ̇k = ωk + εR sin(θ − ϕk + αk) . (12)

The order parameter R describes the degree of synchro-
nization, R = 1 denotes full synchrony and R = 0 is an
indicator for incoherence or antisymmetry.

One of the most important properties of this model is
the analytical solvability. In the case of identical oscil-
lators, the powerful Watanabe-Strogatz (WS) theory
can be used [37,38]. It allows for the reduction of the
dynamics from N dimensions to just 3 and N − 3 con-
stants of motion. The remaining degrees of freedom
are three variables ρ, Ψ and Θ. Between them and the
mean-field exists a correspondence, although they are
not equal. Generally, ρ and Θ are close to R and θ, while
the final variable Ψ can be seen as a measure of the
system’s clustering. The correspondence between the
degrees of freedom and the mean-field becomes even
bigger in the thermodynamic limit when the dynam-
ics move on the Ott-Antonsen manifold [39,40] and
reduced to just the mean-field variables, R and θ. The
Ott-Antonsen manifold can only be seen as an asymp-
totic solution, as the transients can be very long [41,42].

When investigating multiple (M) groups of oscilla-
tors, the Kuramoto model can be extended to the M-
Kuramoto model. The groups interact with different
coupling strength and may have phase shifts,

ϕ̇σ
k = ωσ

k +
M∑

σ′=1

εσ,σ′

N

Nσ′∑

j=1

sin(ϕσ′
j − ϕσ

k + ασ,σ′) .

(13)

Here σ and σ′ denote the different groups and εσ,σ′

and ασ,σ′ are the coupling strengths and phase shifts
between groups σ and σ′, respectively.

Consider the system with εσ,σ′ = εσ′ and ασ,σ′ = ασ′

and two groups of identical oscillators, one attractive ϕa

and one repulsive ϕr

ϕ̇a
k = ωa +

1
N

Na∑

j=1

sin(ϕa
j − ϕa

k + αa)

−1 + ε

N

Nr∑

j=1

sin(ϕr
j − ϕa

k + αr)

(a)
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Fig. 2 The solitary state in an M-Kuramoto model is visu-
alized in (a). The red ring shows the attractive cluster, the
big blue circle the repulsive cluster and the small blue circle
the solitary oscillator. In (b) the existence of the solitary
state is plotted. The dashed black line shows the analytical
prediction for Na = Nr = 5 and the light gray area the
numerical observation. The solid black line and dark gray
area show the same, but for Na = Nr = 8

ϕ̇r
k = ωr +

1
N

Na∑

j=1

sin(ϕa
j − ϕr

k + αa)

−1 + ε

N

Nr∑

j=1

sin(ϕr
j − ϕr

k + αr) , (14)

where the time was rescaled such that the attrac-
tive group has coupling strength 1 and the repul-
sive −(1 + ε). Then ε no longer measures the cou-
pling strength, but the excess of repulsive coupling.
These equations can be reduced further by introducing
the mean-fields of the groups Za,r = 1/Na,r

∑
eiϕa,r , as

before, and a common forcing

H =
Na

N
eiαaZa − Nr

N
(1 + ε)eiαrZr . (15)

The reduced equations are

ϕ̇a = ωa + Im
[
He−iϕa

]

ϕ̇r = ωr + Im
[
He−iϕr

], (16)

and allow for the application of the WS theory to the
system [43].

In the system without natural frequencies ωσ
k = 0

there exists a peculiar solitary state [6], see Fig. 2a.
When both groups have the same size Na = Nr, the
attractive group, and all the repulsive oscillators, except
for one, will cluster at the same point. The remaining
repulsive oscillator will be phase-shifted by π. In the
case of ασ′ = 0, the state exists for all values of N in
some region of ε (which shrinks for increasing N), but it
does not have full measure, i.e., some initial conditions
may lead to a different state. For ασ′ �= 0, the state only
exists up to a critical system size and without full mea-
sure. The state’s existence is also predicted by the WS
theory and is the only allowed clustered state, except
for full synchrony.

Since the solitary state is a rather new discovery,
there are slightly different definitions of it. The most
popular one is that in a system with a natural order of
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the oscillators, e.g., ordered by their natural frequency,
some single oscillators behave differently than the rest
of the population and, more importantly, than their
immediate neighbors. This is the main difference to a
chimera state, where a whole subpopulation exhibits a
different behavior. Kapitaniak et al. observed such a
state in Ref. [44] with metronomes coupled in a ring
to their nearest neighbor and second nearest neigh-
bor. In such a configuration, some single oscillators’
phases will differ from the rest of their synchronized
neighbors. Another observation was made in Ref. [45],
where superconducting quantum interference devices
were placed in a one-dimensional array and coupled
magnetically. In this case, the solitary oscillators exhibit
a higher amplitude than the rest of the population.

The solitary state has also been found numerically in
simulations of coupled Lorenz oscillators [46] and in a
ring of coupled Stuart-Landau oscillators with symme-
try breaking attractive and repulsive long-range cou-
pling [47]. The observation of the existence in multi-
plex networks of FitzHugh-Nagumo oscillators coupled
in rings with a small mismatch in the intra-layer cou-
plings [48], allows even for controlling strategies to tune
the dynamics in, e.g., neural networks.

While the existence has been shown in many differ-
ent systems, there are only a few results in investigating
its emergence and stability. In a Kuramoto model with
inertia, the solitary state arises from a homoclinic bifur-
cation and persists even in the thermodynamic limit
[49], in contrast to it being a finite size effect in the M-
Kuramoto model with attractive and repulsive inter-
action. Aside from differential equations, the solitary
state has also been found in coupled maps. Multiplex
network of non-locally coupled maps with a singular
hyperbolic attractor exhibit solitary states in their tran-
sition from coherence to incoherence [50,51]. During the
transition, more and more solitary oscillators appear,
growing almost linearly with the decrease in the cou-
pling strength. This is the result of an increase of the
size of the basin of attraction of the solitary set with a
decrease in the coupling, as more random initial condi-
tions lie in this basin [52]. To also induce solitary states
in maps with nonhyperbolic attractors, a multiplicative
noise can be added to the coupling constant, thus also
showing the existence of the solitary state in a noisy
system [53].

These solitary state can consist of multiple solitary
oscillators, but from here on, a solitary state is defined
more narrowly, such that a single oscillator shows a
different behavior than the rest of the population.

In Ref. [17] we extend the M-Kuramoto model from
Ref. [6] to consider non-identical groups without phase
shift αa = αr = 0. The oscillators in each group are
identical, but there exists a difference in the natural fre-
quencies ω, i.e., in Eqs. (14) ωa = 0 and ωr = ω. In this
case the solitary state changes: the cluster of the repul-
sive oscillator has a small phase-shift in relation to the
cluster of the attractive oscillators and the phase-shift
between the repulsive cluster (or the attractive cluster)
and the solitary oscillator is no longer π. The solitary
state also has full measure, it will always be reached,
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Fig. 3 Parameter space of the M-Kuramoto model in
Eqs. (14) with non-identical groups. The color shows the
average order parameter of the repulsive group R̄r. Full syn-
chrony is denoted by the black region, the solitary state by
the red region and the white lines show the condition of
existence for the fully synchronous state

regardless of the initial condition. The region of exis-
tence of the solitary state, as well as the phase shifts
between the clusters and the solitary oscillator can be
calculated and fits well to numerical observations, see
Fig. 2b. The state is also not stationary, but rotates
with a constant frequency

ν =
1 + ε

ε
ω . (17)

Aside from the solitary, there exist two other states
in the system (Fig. 3), a fully synchronous state and
a self-consistent partial synchronous state. In the fully
synchronous state both clusters are fully synchronized,
have a constant phase shift, and rotate with a uniform
frequency. The region of existence and the stability of
the state can be calculated directly from Eqs. (14). The
results show that the region of stability with

ω = ±
√

−ε3

2
− ε4

4
, (18)

is slightly smaller than the region of existence, which
fits the numerical results in Fig. 3. The frequency has
the same relation as the solitary state in Eq. (17). We
also find numerically that the attractive group always
fully synchronizes, even outside the fully synchronous
state, although there is no analytical proof for this. A
simple check of the stability for the attractive cluster
yields the inequality

Rr cos(θr − θa) < (1 + ε)−1 . (19)

The exact dynamics of the mean-field quantities are
unknown, so this cannot be solved analytically, but sim-
ulations show that θr − θa is quite small and Rr falls
off very quickly with ε so that this equality is always
fulfilled, and the attractive group fully synchronizes.

The final state, self-consistent partial synchrony, is
defined by the difference in average frequencies between
the single oscillators and their mean-field [54]. The
oscillators of the repulsive group move at a frequency
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Fig. 4 Goodness of fit for the WS theory in the M-
Kuramoto model from Eq. (14). In (a) the difference
between the numerical (ν̄n,r) and analytical (ν̄a,r) average
frequency for the single oscillators (dashed black line) and

the mean-field (solid black line,
¯̇
θr) of the repulsive group

is shown. The frequencies were averaged over 100 different
initial conditions for Na = Nr = 5 and ε = 0.5. In (b) the
average order parameter is plotted, where the blue crosses
(black dots) show different initial conditions for ω = 0.02
(ω = 0.6) and their analytical value as a solid black line
(green dashed line)

that is generally faster than their mean-field. The WS
theory cannot be applied to the whole system at once
to explain this behavior, but on each group separately
[43]. Making the crude approximation of the thermo-
dynamic limit as well as stationarity (numerically we
find that the average frequencies of both mean-fields
coincide), allows for the calculation of the mean-field
variables on the Ott-Antonsen manifold. As expected,
they do not fit well for small ω or ε, but give a sur-
prisingly good approximation for big ω and ε, even for
a small system of Na = Nr = 5, see Fig. 4. With the
now known average values of Rr and θ̇r it is possible to
calculate the average frequency of the oscillators in the
WS theory [55] as (bars denote the time-average)

ν̄r =
1 − R̄2

r

1 + R̄2
r

ω +
2R̄2

r

1 + R̄2
r

¯̇
θr , (20)

which shows clearly the expected difference between the
average frequency of the mean-field and the single oscil-
lators.

Even in a simple model of phase coupled oscillators
in the weak coupling limit, it is possible to find interest-
ing dynamical states. This can be extended further by
considering more complex coupling schemes than sim-
ple all-to-all coupling. For even richer dynamics, higher-
order coupling terms need to be considered.

3.2 Higher order phase dynamics—Stuart-Landau
model

Extending the first order phase approximation for cou-
pled oscillators in Eq. (10) to higher orders needs knowl-
edge of the phase dynamics of the uncoupled units.
One of the oscillators with a known analytical phase
is the Stuart-Landau oscillator [2,56]. Its dimensionless

dynamics in a coupled system are

dA

dt
= (1 + iω)A − |A|2 A − iγA(|A|2 − 1)

+εG(A1, A2, . . .) , (21)

where A is a complex amplitude, ω is the frequency and
γ is the non-isochronicity parameter and determines
Φ(A). Using A = Reiθ leads to

Ṙ = R − R3 + εRe
[
e−iθG

]

θ̇ = ω − γ(R2 − 1) + εR−1Im
[
e−iθG

]
.

(22)

From there it follows for the phase of the uncoupled
system ϕ = θ − γ ln(R) and

Ṙ = R − R3 + εRe
[
e−i(ϕ+γ lnR)G

]

ϕ̇ = ω + εR−1
(
Im

[
e−i(ϕ+γ lnR)G

]

−γRe
[
e−i(ϕ+γ lnR)G

])
.

(23)

In Ref. [15], eight nanomechanical systems (NEMS)
with dynamical equations resembling the Stuart-Landau
oscillator were coupled in a circle. The oscillators were
connected with their two neighbors, and the coupling
term consisted of the average of them. The resulting
phase reduction up to the second order in the cou-
pling strength contained terms not present as physical
links in the coupling scheme, such as sin(ϕk+2 − ϕk),
sin(ϕk+2 − 2ϕk+1 + ϕk) and similar terms in the oppo-
site direction. These non-structural terms only appear
in the second-order approximation and would not be
recovered in the typical first-order phase reduction. The
observed system exhibits many dynamical states, such
as traveling waves or weak chimeras, which would not
necessarily be expected in the first-order phase approxi-
mation. Numerical simulations of the phase model show
good agreement with the experimental results, pointing
to the importance of the non-structural coupling terms
in complex synchronization behavior.

Similarly, in Ref. [14] a system of coupled Stuart-
Landau oscillators was investigated numerically. The
oscillators were coupled all-to-all to their mean-field.
In the phase reduction up to the second-order in ε
appeared terms of the form sin(ϕm + ϕn − 2ϕk), where
m, n and k are all possible combinations, coupling three
oscillators. They determined that these terms are neces-
sary to explain the system’s full dynamics but are again
not present in the first-order phase dynamics, which
only contains the existing pairwise connections.

In both Refs. [14,15] with coupled Stuart-Landau-like
oscillators, the first-order approximation of the phase
dynamics yields a Kuramoto-like model. This allows the
novel terms to be seen as an extension of the Kuramoto
model in Eq. (11) to higher coupling strength.

Based on the observations for the NEMS we investi-
gated the higher order phase reduction for a system of
three coupled nonidentical Stuart-Landau oscillators in
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c1,2

c2,1

c2,3

c3,2
A2 A3

Fig. 5 A system of three Stuart-Landau oscillators cou-
pled in a line. The Ak denote the complex amplitudes and
the cj,k the coupling terms between the oscillators

Ref. [18]. In difference to Ref. [14] one pairwise connec-
tion is missing. The coupling scheme is a line, as can be
seen in Fig. 5 and is given by

Gk(Ak, Ak−1, Ak+1) = ck−1,keiβk−1,kAk−1

+ck+1,keiβk+1,kAk+1 , (24)

where the cj,k are of O(1) and the βj,k are phase shifts
between the two oscillators. To extend the phase reduc-
tion beyond the first order in ε we use a perturbation
method, where the R and ϕ̇ are functions of the phases
and expand them as a power series

R = 1+ εr(1)(ϕ, ϕ1, ϕ2, . . .) + ε2r(2)(ϕ, ϕ1, ϕ2, . . .) + · · ·
ϕ̇ = ω + εψ(1)(ϕ, ϕ1, ϕ2, . . .) + ε2ψ(2)(ϕ, ϕ1, ϕ2, . . .) + · · · .

(25)

In the dimensionless form the limit cycle of the uncou-
pled oscillator has the amplitude R0 = 1, as can be eas-
ily checked in Eq. (22). Inserting these assumptions in
Eq. (23), the dynamics of r(1), r(2), ψ(1), ψ(2) and so
on can be found by gathering the powers of ε. The full
calculation is rather long, so please see Ref. [18] for a
detailed explanation. Here it will suffice to say that to
find the phase dynamics in the second order in ε, a par-
tial differential equation has to be solved using a Fourier
series to represent the coupling function Gk. This rep-
resentation is motivated by the fact that Gk has to be
2π-periodic for all the phases. The resulting reduction
for the first oscillator up to the second order in ε is

ϕ̇1 = ω1+εc2,1[sin(ϕ2−ϕ1+β2,1)−γ cos(ϕ2−ϕ1+β2,1)]

+ε2
[
a
(2)
1;0,0,0 + a

(2)
1;−2,2,0 cos(2ϕ2 − 2ϕ1)

+b
(2)
1;−2,2,0 sin(2ϕ2 − 2ϕ1)

+a
(2)
1;−1,2,−1 cos(2ϕ2 − ϕ1 − ϕ3)

+b
(2)
1;−1,2,−1 sin(2ϕ2 − ϕ1 − ϕ3)

+a
(2)
1;−1,0,1 cos(ϕ3 − ϕ1) + b

(2)
1;−1,0,1 sin(ϕ3 − ϕ1)

]
,

(26)

with a
(j)
k;l and b

(j)
k;l denoting the coefficients for cosine

and sine terms respectively and k being the index of the
oscillator. A vector of integers l contains the coefficients
before the phases and j the power in ε.

Using the perturbation method up to the second
order in ε yields again non-structural terms in Eq. (26),
e.g. terms of the form sin(ϕ3 − ϕ1). Aside from these,

there exist additional terms coupling all three oscilla-
tors sin(2ϕ2 − ϕ1 − ϕ3) and second harmonics
sin(2ϕ2 − 2ϕ1). The coefficients of the second order also
contain the frequency difference between the oscillators,
whereas the first order terms do not.

A Fourier Ansatz is used to measure the coupling
terms numerically and verify the analytical results. The
phase dynamics are 2π-periodic, so they can be written
as a multidimensional Fourier series

ϕ̇k = ak;0 +
∑

l �=0

[ak;l cos(ϕ · l) + bk;l sin(ϕ · l)] ,

(27)

where ϕ = (ϕ1, ϕ2, . . . , ϕN ) is a vector of all the
phases, l an N-dimensional vector of integers and
ϕ · l =

∑
j ϕj lj the scalar product. The ak,l and bk,l

are Fourier coefficients. This form resembles the ana-
lytical results in Eq. (26) and finding the relevant cou-
pling terms is reduced to fitting the Fourier coefficients
ak;l and bk;l up to some maximum value with |lj | ≤ m.
Because the coupling function is real, ak;−l = −ak;l and
the number of coefficients to consider halves. Still, the
number of terms that need to be fitted scales like m3,
which increases the necessary number of data points for
a good fit very rapidly with m and leads to the curse
of dimensionality.

In the case of partial synchrony, the Fourier coeffi-
cients can be fitted onto one long time series, although
some initial transient has to be integrated over before
the dynamics reach the torus spanned by the phases.
For a good fit, the trajectory should be long enough
to cover the whole torus. However, this is not the case
in the synchronous regime; instead, the dynamics will
settle on a single synchronized trajectory. The integra-
tion has to be stopped before reaching this synchronous
trajectory and restarted with different initial conditions
until the torus is sufficiently filled.

Fitting the coefficients for different coupling strengths
ε yields the power series

ak;l = a
(0)
k;l + εa

(1)
k;l + ε2a

(2)
k;l + · · · , (28)

and a similar series for bk;l . The coupling function
is then reconstructed by comparing these series and
Eq. (27). The results of this method fit very well to
the analytical prediction, as can be seen in Fig. 6.

The numerical method to reconstruct the phase can
also be used in cases where the phase is unknown, but
then the phases and their derivatives have to be calcu-
lated numerically. For finding the phase, an autonomous
copy of each oscillator is integrated. It evolves for a
number of its autonomous periods T until it reaches its
limit cycle. The phase after the relaxation is then also
the phase of the point before the relaxation. To find the
derivative, one observes the infinitesimal time step dt of
the perturbed system and sets it in relation to a differ-
ent time step dt on the limit cycle. This time difference
dt is determined by the motion on the limit cycle and
the derivative f in Eq. (1). Using the relation of dt and
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Fig. 6 Comparison of analytical and numerically fitted
modes for the Stuart-Landau oscillators with coupling func-
tion Eq. (24) in the partial synchronous regime. The modes
shown are the cosine terms for the first oscillator in Eq. (26).
In (a) and (b) the red circles denote numerically fitted val-
ues for terms appearing in Eq. (26), while their analyti-
cal values are shown as green boxes. Black triangles denote
terms

∑
j lj = 0, which are the only allowed terms, because

of rotational symmetry. The blue crosses are all other modes
up to l = (4, 4, 4). In (c) the difference between the ana-
lytical and numerically fitted modes are shown. The gray
dashed line is a polynomial ε3, so the error scales stronger
than ε3

dt allows the calculation of the phase derivative, even if
the oscillator is perturbed far from its limit cycle. For
a full explanation and the resulting equation, see Ref.
[18].

4 Summary

Phase dynamics are an important tool to analyze
dynamical systems. In the case of a simple perturbation
of an ensemble of oscillators, this reduces, in the first
order, to the collective PRC. The PRC has been inves-
tigated for a system of coupled Rayleigh oscillators,
where it took a long time to fully relax back onto the
limit cycle after the perturbation, even in comparison
to the time needed for synchronization. This makes the
collective PRC only usable as an approximate descrip-
tion in noisy environments, where it is perturbed again
before it can fully settle.

In the paradigmatical Kuramoto model with two
groups, one attractive and one repulsive, an interest-
ing solitary state is observed that does not appear in
a model with just one group. A single solitary oscilla-
tor leaves its otherwise fully synchronized group in this
state and gets phase-shifted by π. The use of groups
with different natural frequencies leads to a stabiliza-
tion of this state.

In the case of phase dynamics for the description of a
coupled system, most of the current works use the first-
order phase approximation. The first-order reduction
for pairwise coupled units yields only pairwise terms
in the phase model. When extending the phase reduc-
tion beyond the first-order, new connections arise that

are necessary to describe more complicated dynamics.
Even in a simple model of three Stuart-Landau oscilla-
tors, coupled in a line, the second-order approximation
consists only of higher-order or non-structural terms.
The analytical derivation of the additional terms follows
from a simple perturbation Ansatz. A numerical verifi-
cation shows good agreement and supports the analyt-
ical findings.
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