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Abstract Tipping elements occur in various systems such as in socio-economics, ecology and the climate
system. In many cases, the individual tipping elements are not independent of each other, but they interact
across scales in time and space. To model systems of interacting tipping elements, we here introduce the
PyCascades open source software package for studying interacting tipping elements (https://doi.org/10.
5281/zenodo.4153102). PyCascades is an object-oriented and easily extendable package written in the
programming language Python. It allows for investigating under which conditions potentially dangerous
cascades can emerge between interacting dynamical systems, with a focus on tipping elements. With
PyCascades it is possible to use different types of tipping elements such as double-fold and Hopf types
and interactions between them. PyCascades can be applied to arbitrary complex network structures and
has recently been extended to stochastic dynamical systems. This paper provides an overview of the
functionality of PyCascades by introducing the basic concepts and the methodology behind it. In the
end, three examples are discussed, showing three different applications of the software package. First, the
moisture recycling network of the Amazon rainforest is investigated. Second, a model of interacting Earth
system tipping elements is discussed. And third, the PyCascades modelling framework is applied to a global
trade network.

1 Introduction

In the recent years, complex systems research has
increasingly focused on the matter of tipping points [1–
3] since they occur in many different systems including
ecosystems, over economics, the Earth’s climate sys-
tem and social systems [4–10]. Tipping points are the
critical thresholds of tipping elements, where a small
perturbation can be sufficient to invoke a qualitative
change of the whole system. Whether such qualitative
changes can be seen as something desirable or unde-
sirable depends a lot on the context: for instance, a
potential transition of climate tipping elements towards
a potential “hothouse” state might be dangerous for
humanity [11,12], while a rapid transition towards a
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sustainable future lies well within the scope of desired
tipping events [13]. However, oftentimes tipping ele-
ments do not exist in isolation, but interact across scales
in time and space [14,15] such as connected lakes in
ecology [16,17], in the adoption of new technologies in
the economy [18] or the climate tipping elements in
the Earth system [19]. Since several decades, networks
are an established tool for the description of complex
systems [e.g., 20,21]. Complex networks are structures
that represent certain entities as their nodes and their
interaction as their edges. They have been used, for
example, to model oscillators in power grids [22], food
webs [23], interactions of climate system components
[24] and the collaboration network of scientists [25].
Critical behaviour has also been revealed on the net-
work level. For instance, it has been shown that the
likelihood of developing diabetes depends of the criti-
cality of excitable tissue in the Islets of Langerhans of
the pancreas [26].
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Since there is increasing interest in modelling inter-
acting tipping elements within the context of complex
systems [27–29], we bring these two strands of research
together since tipping elements on networks can not
only tip themselves but also imply tipping of neighbour-
ing systems or even the network as a whole. Building
upon recent developments in studying interacting non-
linear dynamics on complex networks [30–34], we here
introduce the unified Python package PyCascades.

In Sect. 2, we describe how PyCascades can be
installed and what the package contains (Sect. 2.1). Fur-
ther, we describe the general structure of our package
(Sect. 2.2), the building blocks of nonlinear dynamical
systems, namely the tipping elements and their inter-
action structure (Sect. 2.3) as well as the network types
natively included in the package (Sect. 2.4) and lastly,
the extension to several types of stochastic tipping ele-
ments (Sect. 2.5). Thereafter, we apply our modelling
framework to three different examples (Sect. 3). First,
we use our model to simulate tipping cascades in the
Amazon rainforest, which is connected by a network of
atmospheric moisture flows (Sect. 3.1). Second, we show
how PyCascades can be extended to large scale Monte
Carlo ensemble studies such that many uncertainties
can be propagated (Sect. 3.2). Third, we exchange the
fundamental differential equation that has been used in
the two earlier examples to model tipping cascades in an
economic example of a global trade network (Sect. 3.3).
Lastly in Sect. 4, we shortly summarise the functional-
ities of PyCascades.

2 Methods

This chapter describes the basic features that are sup-
plied by PyCascades from the installation and the
structure of the package to the fundamental features
that have been developed. Here, a tutorial can be found
that guides the interested reader through the most
important first steps to simulate tipping cascades on
interacting tipping elements (https://doi.org/10.5281/
zenodo.4153102). Furthermore, the code for each of the
following fundamental features and the three applica-
tions is provided there.

2.1 Installation and package structure

PyCascades can be installed via the command line
using the pip-command

pip install pycascades1.

Alternatively, the package can directly be down-
loaded via the website following the zenodo-doi: 10.-
5281/zenodo.4153102. The layout of the file structure
of PyCascades can be found in Table 1. Important
files, which led to the outcomes of this work, are listed

1 The current version of PyCascades is stored at https://
pypi.org/project/pycascades/.

and described there. A dedicated tutorial has been
developed, guiding the interested reader through some
important first steps and features of the software pack-
age. For the Amazon rainforest application and the cli-
mate tipping elements application, further readme-files
have been added in the respective directory. There, it is
explained how the respective simulations can be started
and evaluated. Additionally, the plot scripts for these
two applications are deposited.

2.2 Structure of the core of PyCascades

PyCascades provides a convenient framework to solve
differential equations on complex networks, i.e., it
describes the dynamics of states of nodes in such a net-
work as well as their interactions. The basic assumption
is that the dynamics of tipping elements can be sepa-
rated into one part for the isolated dynamics of the tip-
ping element and another part representing the inter-
action terms (see Sect. 2.3 for more details). For that,
it builds on SciPy differential equation solvers [35] for
the dynamics and on NetworkX [36] to generate the
underlying network.

The core of PyCascades is structured as follows (see
Fig. 1). It provides the two classes tipping_element
and coupling that implement the two described types
of dynamics. From these classes that can be viewed
as references, concrete classes for tipping elements
and interactions can be derived. Currently, PyCas-
cades provides the classes cusp and hopf derived
from tipping_element and linear_coupling derived
from coupling. Other types of tipping elements or
couplings can be implemented in an analogous way.
The class tipping_network which is derived from the
DiGraph class of NetworkX is used to combine differ-
ent tipping_element and coupling objects into a net-
work and identify each tipping_element object with a
node and each coupling object with a link. Finally, an
evolve class is provided with methods to integrate the
resulting ODE system or to trigger tipping events.

2.3 Different types of tipping elements and
interactions

Through the tipping_element class in PyCascades dif-
ferent types of tipping elements can be defined and cou-
pled together. Each tipping element can be described by
its individual dynamics fi and the interaction term gi,
i.e., the coupling to other tipping elements. This yields

τi
dxi

dt
= fi(xi) + gi(x), (1)

where xi represents the state of the respective tipping
element. τi stands for a typical timescale of tipping. The
direct interaction term gi(x) is assumed to be separable
into the summands

gi(x) =
∑

j

gij(xi, xj), (2)
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Table 1 File structure of PyCascades

Directory Important file(s) Purpose

pycascades/examples tutorial.py Introduction to basic features
pycascades/examples example_cusp_hopf.py Timelines of tipping events (Fig. 2)
pycascades/examples network_types_plot.py Network plots (Fig. 3)
pycascades/examples network_tipping_cascade_plot.py Network of tipping cascades (Fig. 3)
pycascades/examples example_cusp_noise.py Different types of noise (Fig. 4)
pycascades/examples economic_cascade.py Economic cascades
pycascades/modules core/gen/utils Core of PyCascades (Sect. 2.2)
pycascades/amazon_rainforest r_crit_unstable_amazon.py Start Amazon rainforest simulations
pycascades/earth_system Main_earth_system.py Start climate tipping events simulations
pycascades/sdeint readme_sdeint.txt How to implement tipping elements with noise and sdeint

Only important files are described below. Separate plot-files and extended readme-files for the Amazon rainforest and the
climate tipping cascades are also supplied in the corresponding directory to facilitate the usage of PyCascades

Fig. 1 UML class diagram of the core of PyCascades
that depicts structure and dependencies of PyCascades’
functionalities separated in the different python classes.
The class tipping_network is derived from the DiGraph

class of the NetworkX package [36]. It aggregates instances
of the general classes tipping_element and coupling.
The evolve class is associated with one instance of the

tipping_network class and simulates the evolution of the
complex dynamical system which is implemented by the
concrete tipping_element and coupling objects with their
specific parameters. For simplicity, only classes and class
members important to the understanding of the PyCascades
core are shown.

linking the tipping elements i and j.
In principle, any kind of tipping element can be sup-

plied in the tipping_element class of PyCascades, but
as of now, there are two kinds of tipping elements prede-
fined that are ready to be used and implemented. These
two tipping elements are elements that possess a Cusp-
bifurcation or a Hopf-bifurcation [37]. The first pre-
implemented tipping element is the Cusp-differential
equation, which has been used in many contexts before
to model nonlinear transitions between two alternative
stable states [15,38]. The normal form of its differential
can be written as

fCusp(x) =
dx

dt
= −a (x− x0)

3 + b (x− x0) + c. (3)

Here, a, b > 0 and x0 represents a shift on the x -axis.
The parameter c is the critical parameter, which invokes
a shift from a lower stable state to an upper stable state
as soon as the critical value ccrit, high is surpassed. The
other way round, when c is diminished, a state tran-
sition from the upper to the lower stable state occurs
at ccrit, low. Equation 3 has the normal form of a fold-
bifurcation and has, as a paradigmatic model, been
applied in many different areas such as systems in ecol-
ogy, climate science and economics [15,29,31,39,40].
For the special case that a = 4, b = 1 and x0 = 0.5,
the two stable states are located at x1 = 0 and x2 = 1
for c = 0. The critical parameter lies at ccrit, high =
−ccrit, low =

√
(4b3)/(27a) =

√
4/(27 · 4) ≈ 0.19. The

bifurcation diagram of this equation is shown in Fig. 2a.
The second tipping element that is provided by

PyCascades is a Hopf-bifurcation. The normal form in
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Fig. 2 The bifurcation diagrams of the pre-implemented
tipping elements are shown, which possess a Cusp- or a
Hopf-bifurcation, respectively (a and b). Further, two exam-
ples of tipping events are shown, once for the case where
no tipping cascade emerges (c and d), and once where a
tipping cascade emerges (e and f). a Bifurcation diagram
of a fold-bifurcation (see Eq. 3). b Bifurcation diagram of
a (supercritical) Hopf-bifurcation (see Eq. 4). c Two cusp
differential equations with the parameters a1 = a2 = 4,
b1 = b2 = 1, x0, 1 = x0, 2 = 0.5 and c1 = 0.2, c2 = 0.
Thus, the first tipping element is slightly pushed over its

upper critical value and a state transition occurs. d One
cusp, initialised as in c, and one tipping element that possi-
bly could undergo a Hopf-bifurcation (a = 1, μ = −1). In c
and d, there is no interaction between the tipping elements,
i.e., Aij = 0 ∀i, j. e and f Same as in c and d, but with
A21 = 0.5 such that the second tipping element (Cusp-2,
Hopf) is coupled to the state of the first element (Cusp-1,
Cusp). Therefore, in the lower panels a tipping cascade of
twofold bifurcations or, respectively, a tipping cascade of
one-fold- and one Hopf-bifurcation can be observed

polar coordinates of this bifurcation can be written as

fHopf, r(r) =
dr

dt
=

(
μ − r2

) · ra

fHopf, φ(φ) =
dφ

dt
= b

(4)

with the parameters a and b. Here, the Hopf-bifurcation
is given in polar coordinates with the radius r and
the angle φ. Importantly, μ is the critical parameter
and a bifurcation from a stable fixed point to a stable
limit and an unstable fixed point occurs when μ crosses
zero from below. The bifurcation diagram is shown in
Fig. 2b. Applications of Hopf-bifurcations have been

found, for instance, in predator–prey cycles in Lotka–
Volterra systems or in the Hodgkin–Huxley model of
neurons [41,42]. In the climate system, there exist con-
ceptual models that represent the El-Niño Southern
Oscillation as a Hopf bifurcation [43,44] based on a
model by Zebiak and Cane [45].

Next, for the interactions, any type of coupling can
in principle be used and implemented in PyCascades.
However, for the moment, only linear interactions are
considered

gi(x) =
N∑

j=1

Aijxj . (5)
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Fig. 3 The three paradigmatic and pre-implemented net-
work types are shown together with an example of a tipping
cascade in this network. Exemplary network structure with
15 nodes and an average degree of 3 for a an Erdős–Rényi
network, b a Watts–Strogatz network (rewiring probability:
0.15) and c a Barabási–Albert network. Exemplary tipping
cascades for a network of 15 nodes, an average degree of 3,
where each node is represented by a Cusp-tipping element

(see Eq. 3) with a = 4, b = −1, x0 = 0.5 for all nodes.
The couplings between the nodes are alternately set to 0.2
and −0.4 for interaction 1, 2, 3, etc. Then at t = 0 one
randomly chosen node i is set to the upper state by choos-
ing ci = 0.2 such that tipping cascades can emerge. The
number of tipped elements are shown for d an Erdős–Rényi
network, e a Watts–Strogatz network (rewiring probability:
0.15) and f a Barabási–Albert network

If there is a connection between tipping element i and
j, then Aij �= 0, otherwise Aij = 0. In Fig. 2c–f, we
show an example how tipping cascades can emerge from
the coupling between two tipping elements for the case
of two cusp-differential and for the case of one cusp
coupled to the normal form of a Hopf-bifurcation.

2.4 Paradigmatic network types of interacting
tipping elements

With PyCascades it is possible to investigate the
dynamics of tipping and tipping cascades in larger
directed networks. These types of networks can either
be explicitly spatially embedded (see Sect. 3) or well-
known predefined network models such as the Erdős–
Rényi model, the Barabási–Albert model or the Watts–
Strogatz model [46–48]. Originally, the network mod-
els that are inbuilt in python’s network package Net-
workX are undirected for Watts–Strogatz networks and
Barabási–Albert networks, while we require directed
networks. Additionally, it might also be helpful or nec-
essary to be able to determine a certain average degree.
Therefore, a generalisation of these two networks types
has been developed. (i) Watts–Strogatz network: a reg-
ular network is created where each node i is connected

to its m closest neighbours in both directions. m must
be an even integer and the average degree 〈k〉 = m.
m is chosen in such a way that the average degree of
the resulting network is larger than the desired aver-
age degree. Then links are randomly deleted until the
desired average degree is reached. Lastly, each of the
remaining links is rewired with the desired rewiring
probability as in the usual Watts–Strogatz model. (ii)
Barabási–Albert model: first, two nodes are bidirec-
tionally coupled. Each further node is, again, bidirec-
tionally coupled to one already existing node i with
the probability p = (kin

i + kout
i )/(

∑
mn amn), where

kin
i is the in-degree and kout

i is the out-degree of node
i. With amn, the sum of all edges in the network is
denoted. In the end, the average degree 〈k〉 depends on
the stochastic network. Therefore, it can happen that
the actual average degree 〈k〉 of the network exceeds
or falls below the desired average degree kdes. While
〈k〉 < kdes, another link is added between two ran-
domly selected nodes i and j. While 〈k〉 > kdes, a
link between two randomly selected nodes i and j is
deleted. For comparison of the construction of these
network models, see also Krönke et al. [30]. Examples
for a realisation of these three network types and an
exemplary tipping cascade in those can be found in
Fig. 3.
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Fig. 4 Noise-induced tipping events with respect to dif-
ferent types of noise (Gauss, Lévy, Cauchy) that are avail-
able in PyCascades. Simulation of one Cusp-tipping (a = 4,
b = 1, c = x0 = 0) element with stochastic noise (see

Eq. 6) of the following type: a Gaussian noise (σ = 0.25,
see Eq. 7), b Lévy noise (σ = 1.0, see Eq. 7) and c Cauchy
noise (σ = 1.0, see Eq. 7)

2.5 Stochasticity in tipping elements

In the real world, systems often underlie fluctuations,
which under certain circumstances can cause criti-
cal transitions, called noise-induced tipping. Numerous
prominent examples can be found in dynamical sys-
tems such as in electronics, optics or neurons, but also
in ecology and in the Earth’s climate system [49–53].
Therefore, we decided to create a class for a stochastic
version of the cusp tipping element (Eq. 3) for additive
noise

fCusp, stoch.

= dx =
[
−a (x − x0)

3 + b (x − x0) + c
]
dt + σdW.

(6)

Here, σ denotes the noise level and dW/dt describes the
Wiener process or Brownian motion. In the case of ran-
dom white noise (Gaussian white noise) as used here, W
is sampled from a Gaussian distribution. To implement
stochastic differential equations, python’s SciPy func-
tion odeint has been replaced by sdeint [54]. sdeint
has several algorithms implemented, which are able to
solve stochastic differential equations. Here, and in the
provided version of PyCascades, an order 1.0 strong
stochastic Runge–Kutta algorithm is employed [55].

Furthermore, Gaussian noise distributions are not
necessarily able to describe all types of fluctuations in
real-world systems since in reality noise might be corre-
lated or not be standard normally distributed. Besides
Gaussian noise, PyCascades allows to compute systems
with Lévy and Cauchy noise (see Fig. 4). These types of
noise (Lévy, Cauchy) may be more suitable for describ-
ing extreme events than Gaussian noise; however, in
the implemented form, they still remain uncorrelated.
It has been found that the probability of jumping
between the two stable states in a double-well potential
is impacted by single strong extreme events from those
α-stable noise distributions [56]. For instance, it has
been proposed that this might have been of relevance
for climate system states on a millennial time scale
during the last glacial period as was observed in ice-
cores [57]. Also, transitions triggered by extreme events
emerging from Lévy-distributions in other nonlinear cli-

mate system components such as the Amazon rainforest
or the thermohaline circulation have been investigated,
as well as transitions in gene expression processes in
molecular biology [58–60].

The distributions for Gaussian, Lévy and Cauchy
noise in PyCascades are taken from python’s SciPy
libraries

pGauss(x) =
1√

2πσ2
· exp

(
− x2

2σ2

)

pLévy(x) = 0.5 · pLévy, pos. + 0.5 · pLévy, neg. =

= 0.5 ·
√

σ

2πx3
· exp

(
− σ

2x

)

+ 0.5 ·
√

σ

2π |x|3 · exp
(

− σ

2 |x|
)

pCauchy(x) =
1

σπ
· σ2

σ2 + x2
,

(7)

where σ is the standard deviation and the mean value
μ ≡ 0.

3 Applications

In this section, we show three examples of how PyCas-
cades can be applied to real-world systems. The first
application is the moisture-recycling network of the
Amazon rainforest, where we introduce PyCascades on
a spatially embedded network. In the second applica-
tion in a subset of interacting climate tipping elements,
we combine the PyCascades modelling framework with
a large-scale setup of Monte Carlo simulation to show
how numerous uncertainties in parameters can be prop-
agated systematically. The third application, a global
trade network of more than 5000 nodes and 400,000
links, complements our analysis by simulating tipping
cascades with a modernised, economically motivated
differential equation (see Eq. 10) replacing the Cusp-
differential equation (see Eq. 3).
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Atmospheric moisture transport

Rainfall
(a) (b)

(c) (d)
Forest patch

Fig. 5 Tipping cascades in a conceptual model of the
Amazon rainforest connected via an atmospheric moisture
recycling network. a Sketch of the network of interacting
rainforest patches in the Amazon rainforest. Precipitation
rains down over some parts of the rainforest and parts of
it are re-evapotranspirated and transported further by the
wind (atmospheric moisture transport). b–d Exemplary tip-
ping experiment on a 0.5×0.5◦ grid, where each grid cell

represents one rainforest patch. The colour bar represents
the likelihood of tipping averaged over the years 2003–2014.
We show a comparison between b coupling switched on (see
Eq. 8), c coupling switched off (see Eq. 8 with gi(x) ≡ 0
∀i) and d the difference between the panels b and c. For
each year in the study period (2003–2014), we performed
one such tipping experiment, and the results shown are an
average over this period

3.1 The Amazon rainforest

It is suspected that the Amazon rainforest is a tip-
ping element in the Earth’s climate system [4], which
might approach a tipping point due to various anthro-
pogenic pressures including climate change, fires and
land-use change [61–63]. The Amazon rainforest might
exhibit multistability at certain rainfall levels, as sug-
gested by conceptual models and observational data
[64–68]. This implies that rainforest patches may tran-
sition to a savannah-like state when the rainfall drops
below a certain critical level. These rainforest patches
depend on each other, as rain is re-evaporated by the
trees and thus preserved in the system through atmo-
spheric moisture recycling [69,70] (see Fig. 5a). This
means that the Amazon rainforest is an excellent exam-
ple of how tipping cascades can travel through a system,
which can be modelled with PyCascades. We divide the
Amazon into 0.5×0.5◦ (approximately 50 km) grid cells
and assume that each is an interacting tipping element
that can be described by Eqs. 3 and 5. For simplicity,
we chose ai = bi = 1 and x0,i = 0 for all tipping ele-
ments and further assume that the critical parameter is
only dependent on the rainfall a rainforest cell receives,
which tips in case the received rainfall is less than the

critical rainfall. Then the critical parameter ci and the
coupling gi(x) can be denoted as

ci = c0 · Ri − 〈R〉
Rcrit − 〈R〉

gi(x) =
1
2

c0
Rcrit − 〈R〉

N∑

j=1

δRain
ij .

(8)

Here, Ri is the rainfall in cell i, 〈R〉 is the average rain-
fall over the whole Amazon basin and Rcrit is the crit-
ical rainfall. Further, c0 =

√
4/27 if a = b = 1 and

x0 = 0. Lastly, δRain
ij is the moisture transport in mm/yr

from cell j to cell i. Since the distance between the two
stable states is 2, a prefactor of 1/2 is required to re-
normalise the coupling. We choose the critical rainfall
Rcrit to be 1700 mm/year for all cells, which is approxi-
mately the value below which the alternative savannah
state becomes more resilient than the rainforest state
[71]. The atmospheric moisture recycling simulations
used in this work were performed by Staal et al. [72]
for the years 2003–2014 and assembled into a network
by Krönke et al. (2020) [30]. In this simplified exam-
ple, we assume that if a forested grid cell tips, moisture
recycling via that cell stops. We performed a tipping
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experiment for each year between 2003 and 2014 and
averaged the results over this period. We find tipping
events in several parts of the Amazon basin which cas-
cade to other forest patches (Fig. 5b–d). This analysis
illustrates how PyCascades can be applied to simulate
tipping events and cascades in a real-world network of
interacting tipping elements.

3.2 Climate tipping elements

Apart from the Amazon rainforest, there exists a range
of processes and systems in the Earth’s climate sys-
tem that exhibit threshold behaviour [4]. These tipping
elements contain biosphere components (e.g. Amazon
rainforest, coral reefs), large-circulation patterns (e.g.
Atlantic Meridional Overturning Circulation, monsoon
systems) or cryosphere components (e.g. Greenland Ice
Sheet, West Antarctic Ice Sheet). Under ongoing global
warming, many of them are at risk of transitioning into
an alternative, tipped state at lower levels of global
warming than previously though [12,73]. Such transi-
tions would have dangerous consequences for human-
ity and biosphere integrity in the Earth system [11,12].
There is an additional risk that tipping elements are
strengthened by reinforcing, positive feedbacks within
the climate system such that cascades might be trig-
gered, potentially up to a planetary-scale tipping cas-
cade that could push the Earth towards a “hothouse”
state [11]. Moreover, the tipping elements in the climate
system are interacting and there is a subset of five tip-
ping elements where the interaction structure has been
made explicit by an expert elicitation [19]. This network
and their interactions have been used by some studies
to investigate the risk of tipping cascades in the climate
system, but also to quantify economic damages exerted
by interacting tipping elements [27,33,74].

Here, we show how PyCascades can be used to
simulate tipping events in four of the five aforemen-
tioned tipping elements: the Greenland Ice Sheet (GIS),
the West Antarctic Ice Sheet (WAIS), the Atlantic
Meridional Overturning Circulation (AMOC) and the
Amazon Rainforest (AR). For these four tipping ele-
ments, there exist conceptual models of their non-
linear behaviour with respect to a forcing parameter
[64,66,75–77], which can be traced back to increases
in levels of global warming above pre-industrial [73].
Therefore, we can arguably model these four elements
by

dxi
dt

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−x3
i + xi +

√
4/27

Tcrit, i
· ΔGMT

︸ ︷︷ ︸
Individual dynamics term

+
∑

j
j �=i

sij

4
(xj + 1)

︸ ︷︷ ︸
Interaction term

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1
τi

with i = {GIS, WAIS, AMOC, AR} .

(9)

Here, ΔGMT is the increase of the global mean temper-
ature, Tcrit, i the critical temperature at which a certain

tipping element transgresses its baseline state, sij the
interaction strength between the tipping elements and
τi the time a certain tipping event needs. Each sij has
a certain physical meaning, for instance, the freshwa-
ter entry from the GIS weakens the AMOC, while a
weaker AMOC cools the northern hemisphere at the
same time [78, e.g.]. The typical tipping time scales
τi are chosen to be 4900, 2400, 300 and 50 years at
4 ◦C above pre-industrial levels of global warming for
GIS, WAIS, AMOC and AR, respectively. For more
details, see Fig. 6 and please be referred to Wunderling
et al. [31]. The parameter uncertainties and a poten-
tial interaction structure are shown in Figs. 6 and 7.
In Eq. 9, there are many parameters with uncertain-
ties, for instance at which temperature Tcrit, i a critical
transition occurs or how strong the interactions sij are.
While upper and lower limits are given in the literature
[19,73], their uncertainty need to be propagated thor-
oughly. For this purpose, we use a large-scale Monte-
Carlo ensemble based on the latin hypercube sampling
(LHS) method pyDOE [79]. The LHS is a sampling
method that generates initial conditions that can be
used in a Monte Carlo ensemble. They cover the state
space of all uncertain parameters to a higher degree
than random sample generation and are, therefore, bet-
ter suited to create Monte Carlo ensembles in higher
dimensional systems. In Figs. 6 and 7, we demonstrate
that constructing a large-scale Monte Carlo ensemble
can be combined with simulating tipping cascades with
PyCascades. In the critical temperatures Tcrit, i and the
interaction strengths sij are 11 parameters with uncer-
tainties (see Fig. 6). Upon that, we construct an ensem-
ble of 1000 initial conditions.

In Eq. 9, we assume that the interaction term is 25%
as important as the individual dynamics term. Thus,
the interaction strength sij is divided by 4 in Eq. 9.
While this poses a hypothetical scenario, it allows us
to estimate the likelihood of tipping of certain element
at a certain increase of the global mean temperature
ΔGMT. For 2 ◦C, we find that the likelihood of tipping
is around 50% for the GIS and WAIS, while it is sig-
nificantly lower for the AMOC (around 25%) and the
AR (less than 5%). There is a relatively high likelihood
that GIS and WAIS tip since their critical temperature
is lowest and there is a strong interaction link from GIS
to WAIS. Therefore, the likelihood of tipping is lower
for the AMOC, but the uncertainty is higher due to the
strong negative feedback loop with GIS. Lastly, the AR
has a very low likelihood of tipping since it is only con-
nected to the other tipping elements via one uncertain
link from AMOC.

3.3 International trade network

In the third example, we apply the PyCascades frame-
work of interacting tipping elements to the Inter-
national Trade Network. We construct the network
from the EORA multi-regional input–output (MRIO)
database [80] as also done in other studies [81,82]. The
database, which has also been subject to static anal-
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temperatures [73] and b interaction strengths [19] are put

into a Latin hypercube sampling algorithm [79] to construct
suitable initial conditions c that cover a larger part of the
state space than normal random sampling would
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Fig. 7 Tipping cascades in a conceptual model of climate
tipping elements. a Interaction structure of four tipping
elements (Greenland Ice Sheet: GIS, West Antarctic Ice
Sheet: WAIS, Atlantic Meridional Overturning Circulation:
AMOC, AR: Amazon rainforest). Destabilising interactions
are depicted in red, stabilising interactions are depicted in
light blue and uncertain interactions are shown in black. b
Likelihood for the respective tipping element to transgress
its stable branch computed by running Eq. 9 into equilib-
rium. The error bar shows the standard deviation arising
from the nine different possibilities of constructing the net-
work. There are two uncertain links since their direction
of interaction is unclear, meaning they could be stabilising,
destabilising or zero, i.e., [−, 0, +]. Permuting these three
options, gives nine different network structures and for each
of them, we simulate 1000 ensemble members. We chose a
scenario, where ΔGMT = 2 ◦C above pre-industrial levels

yses [83], consists of 188 countries with 27 economic
sectors each, and includes the annual monetary flows
between these sectors and regions. We interpret the
individual sectors in each country as nodes of a net-
work, and the flow fij in the MRIO table as the weight
for each directed link from node j to i. In our analysis,
we use the data for the year 2012. Following previous
analyses [81,82,84], we also use a threshold of 106 US-$
such that we exclude unrealistically small flows.

Propagation of economic losses on the trade net-
work has previously been studied, for instance, with
the Acclimate model [84]. This model interprets the
economic sectors in each country as firms producing a
commodity specific for the respective sector. Each firm
does so using other commodities as inputs with spe-
cific, fixed proportions according to a Leontief produc-
tion function [85] as also used in simpler input–output
models. These fixed proportions are taken from the
multi-regional input–output (MRIO) table underlying
the construction of the trade network, which constitute
the baseline state (untipped state) of the model. If, for
instance, the transportation sector in a country receives
an input of ten billion US-$ from the oil sector and 90
billion US-$ from the machinery sector, it might have
an output of 110 billion US-$ according to the MRIO
table such that the created surplus would be 10 billion
US-$. However, the according sector always produces
according to these proportions using nine times as much
“machinery commodity” as “oil commodity”, and pro-
duces ten percent more “transportation commodity”
than the sum of its inputs. If a firm receives only a
certain fraction of the baseline state of a commodity
due to some perturbation, the firm’s output is limited
to the same fraction of the baseline output. However, in
the Acclimate model firms have idle capacities, i.e. the
ability to temporarily produce more than their baseline
output, if they have the necessary inputs and demand is
high. The dynamics of this anomaly model are focused
on perturbations around the baseline state with each
agent aiming for maximum profit and minimum costs
under local circumstances. After a shock or perturba-
tion ceases the model returns back to the baseline state,
which constitutes an equilibrium of the model’s dynam-
ics.

Tipping is not at the centre of the Acclimate model
whose scope, as an anomaly model, vanishes for very
large perturbations such as bankruptcies. We here,
thus, define a simple dynamic for tipping on the trade
network while keeping the linear Leontief production
assumption for small perturbations, whereas nonlinear
dynamics are assumed for larger perturbations. Non-
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linear behaviour and tipping is common in economic
networks, for instance in the banking sector [5,86]. The
nodes in the trade network are only to be perceived as
representative firms, i.e., aggregates of national sectors,
which consist of a variety of connected actors—so each
node represents a network itself and might show non-
linear as well as tipping behaviour. The standard form
of a tipping element defined by the Cusp-differential
equation (see Eq. 3) is not well suited for this purpose.
Instead, we are here looking for a new differential equa-
tion with the following properties:

1. The state xi of a node i should represent its produc-
tivity that is between 0 (no production) to 1 (full
production).

2. The element should react almost linearly to small
perturbations as in the Acclimate model.

3. For large perturbations there should be a collapse of
the productivity, including tipping and hysteresis.

To meet these criteria, we propose the differential equa-
tion

dxi

dt
= ri − xi − a

√
x · exp (−bxi)

+ wlogxi · (1 − xi) ,
(10)

where a and b are parameters and ri is the limiting
relative input as in the Leontief production function.
The bifurcation diagram is given in Fig. 8a. The first
two terms in equation 10 represent a linear response to
perturbations, similar to the Acclimate model (see the
dotted line in Fig. 8a). The third term is responsible for
the nonlinear behaviour, causing tipping and hysteresis
(see the dashed line in Fig. 8a). However, an economic
tipping element defined by these three terms would be
inherently unstable. Even small perturbations would
finally lead to a collapse of the node since perturba-
tions are almost always growing due to the structure of
the network. However, we know that the trade network
is not that fragile. Therefore, we add a logistic growth
term to the differential equation to stabilise the network
on the individual node level with the weight wlog. Here,
we argue that a certain flexibility in substituting inputs
exists. Within limits, it is therefore possible to return
to the original production due to the logistic growth
term. To illustrate an example, we choose a = 4, b = 10
for the parameters in Eq. 10. Therefore, the two bifur-
cation points lie at r1 = 0.4 and r2 = 0.6. The strength
of the logistic growth term is chosen as wlog = 0.2 (see
the blue line in Fig. 8a).

To calculate the input term represented by ri, every
flow is normalised to the sum of flows from nodes of that
sector to the target node. So the new weight wc,s→i of
a link from sector s in country c to node i is given as

wc,s→i =
fc,s→i∑
k fk,s→i

. (11)

With this, we can write the coupling term for the dif-
ferential equation as

ri = min
s in sectors

{
∑

c in countries

wc,s→i · xc,s

}
. (12)

To simulate cascades, we start with all nodes in the
untipped state, here xi = 1 for all nodes i. We select a
random starting node and tip it by setting its produc-
tivity to zero and then evolve the system with PyCas-
cades. We exemplify this for a cascade between three
countries, where one node has been tipped artificially
(see Fig. 8b). The graph illustrates how the cascade
propagates within and across the different countries
forming densely connected network communities. Once
the cascade reaches a country, most of that country’s
nodes tip almost at the same time. However, this grad-
ual and sequential propagation of a tipping event is
only one pattern of cascading behaviour observed. In
Fig. 9, we show cascades for 30 different start nodes,
chosen such that a wide range of different tipping cas-
cades can be observed. Figure 9a shows the number
of tipped nodes, and Fig. 9b the average node state
〈x〉 = 1

N

∑N
i xi.

4 Conclusion

In this work, we have outlined the software package
PyCascades, which is designed for simulating nonlinear
dynamics, in particular tipping behaviour of interacting
systems. For that purpose, two different types of tipping
elements (Cusp and Hopf-bifurcation type models) are
provided in PyCascades as well as different paradig-
matic complex network types (Erdős–Rényi, Barabési–
Albert, Watts–Strogatz networks) and a stochastic ver-
sion of the tipping elements supplying Gaussian, Lévy
and Cauchy noise. PyCascades is written in the pro-
gramming language Python and is written with an
object-oriented architecture such that it remains flex-
ible and can easily be adapted or extended to further
applications or theoretical problems.

However, a distinct limitation is, as of now, that
only systems can be investigated, where the individ-
ual dynamics part can be separated from the interac-
tion part. We also suspect that there is considerable
potential for improvement in some technical details. For
instance, more interaction types or multiplicative noise
could be implemented. Another distinct constraint of
PyCascades is that only paradigmatic dynamics of tip-
ping elements are implemented. In particular, it would
be highly desirable to develop process-based tipping ele-
ments depending on the respective application.

All in all, due to modular setup, PyCascades has
the potential to contribute to relevant questions about
the emergence of tipping cascades in various contexts,
ranging from economics, ecology, climate science and
beyond.
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work. The cascade depicted in Fig. 8 is plotted in red. a
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