Skip to main content
Log in

Glueballs as the Ithaca of meson spectroscopy

From simple theory to challenging detection

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This compact review about gluonium focuses on a slate of theoretical efforts; among the many standing works, I have selected several that are meant to assist in the identification, among ordinary mesons, of the few Yang–Mills glueball configurations that populate the energy region below 3 GeV. This includes \(J/\psi \) radiative and vector-meson decays, studies of scalar meson mixing, of high-energy cross-sections via the Pomeron and the odderon, glueball decays, etc. The weight of accumulated evidence seems to support the \(f_0(1710)\) as having a large (and the largest) glueball component among the scalars, although no single observable by itself is conclusive. Further tests would be welcome, such as exclusive \(f_J\) production at asymptotically high s and t. No clear experimental candidates for the pseudoscalar or tensor glueball stand out yet, and continuing investigations trying to sort them out will certainly teach us much more about mesons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. There is a minority view that the \(\sigma \)-meson has a Fock-space component of the lowest scalar gluonium as hinted by early bag-model computations and more elaborate QCD sum rules. The approach accommodates its large coupling to \(\pi ^+\pi ^-\) and to (subthreshold) \(K^+K^-\) by invoking a large violation of the OZI rule at these lowest energies. (In contrast, good satisfaction of the OZI rule in the \(\sim 1.7\) GeV energy region suggests sizeable couplings to \(\eta ^{(')}\eta ^{(')}\) pairs with large glue content.)

  2. A recent well known application thereof was to exclude \(J=1\) for the Higgs boson, as its decay \(h\rightarrow \gamma \gamma \) was quickly identified.

  3. A further ambiguity is in the definition of a tetraquark: how does \(q{\bar{q}}q{\bar{q}}\) with \(2=3-1\) pairs generalize to more than three colors, as 2 or as \(N_c-1\) pairs? The ambiguity is resolved in  [40, 41].

  4. This is a different way to show that the analysis of subsection 5.1 below applies to the \(0^{++}\) and \(2^{++}\) but not to the \(0^{-+}\) glueball.

  5. Incidently, the result of that work shows that this meson, popularly known as \(\sigma \), is a poor glueball candidate.

  6. Technically, if \(\alpha (0)=1+\epsilon \), \(\sigma \propto s^\epsilon \) would violate unitarity at asymptotically high energy. While this is of no urgent concern at the LHC where the cross-section of order 100 mbarn is way smaller than the O(20) barn cross-section of the Froissart bound, some authors prefer setting \(\alpha (0)=1\) exactly. Then, a \(J=1\) \(f_1\) meson would be predicted to have zero mass, which is obviously not present in Nature. The Donnachie-Landshoff Pomeron fit nicely excludes this unwanted feature, but then unitarity needs to be corrected by multiple Pomeron exchange.

  7. Strictly speaking, because of the known asymptotic behavior, Szanyi et al. [80] parameterize the odderon trajectory (I have rounded off for clarity) as \(\alpha (t) = (1.23+0.19{\mathrm{GeV}}^{-2} t)/ (1+0.032(\sqrt{t_0-t}-\sqrt{t_0})) \). The denominator, for \(t\sim 9 {\mathrm{GeV}}^2\) in the region where glueballs are important is a small \(O(5\%)\) correction so we can ignore it; its importance resides, for physical t, in the TeV region covered by the LHC.

  8. The well-known work by Bartels, Lipatov and Bacca [83] deals with the BFKL-type odderon with different kinematics, as the Bjorken limit is needed in addition to high energies, and is not relevant for the glueball discussion.

  9. Graviton-graviton scattering is a very long shot [118].

References

  1. G. Munster, M. Walzl, in Lectures Given at the PSI Zuoz Summer School 2000. arXiv:hep-lat/0012005

  2. P. Bacilieri et al., Ape. Phys. Lett. B 205, 535–539 (1988). https://doi.org/10.1016/0370-2693(88)90993-8

    Article  ADS  Google Scholar 

  3. C. Liu, Chin. Phys. Lett. 18, 187–189 (2001). https://doi.org/10.1088/0256-307X/18/2/311

    Article  ADS  Google Scholar 

  4. V. Crede, C.A. Meyer, Prog. Part. Nucl. Phys. 63, 74–116 (2009). https://doi.org/10.1016/j.ppnp.2009.03.001

    Article  ADS  Google Scholar 

  5. V. Mathieu, N. Kochelev, V. Vento, Int. J. Mod. Phys. E 18, 1–49 (2009). https://doi.org/10.1142/S0218301309012124

    Article  ADS  Google Scholar 

  6. C.A. Meyer, Y. Van Haarlem, Phys. Rev. C 82, 025208 (2010). https://doi.org/10.1103/PhysRevC.82.025208

    Article  ADS  Google Scholar 

  7. F.J. Llanes-Estrada, S.R. Cotanch, Phys. Lett. B 504, 15–20 (2001). https://doi.org/10.1016/S0370-2693(01)00290-8

    Article  ADS  Google Scholar 

  8. J. Soto, Nucl. Part. Phys. Proc. 294–296, 87–94 (2018). https://doi.org/10.1016/j.nuclphysbps.2018.03.020

    Article  Google Scholar 

  9. A. Szczepaniak, E.S. Swanson, C.R. Ji, S.R. Cotanch, Phys. Rev. Lett. 76, 2011–2014 (1996). https://doi.org/10.1103/PhysRevLett.76.2011

    Article  ADS  Google Scholar 

  10. A. Athenodorou, M. Teper, JHEP 11, 172 (2020). https://doi.org/10.1007/JHEP11(2020)172

    Article  ADS  Google Scholar 

  11. J.M. Cornwall, A. Soni, Phys. Lett. B 120, 431 (1983). https://doi.org/10.1016/0370-2693(83)90481-1

    Article  ADS  Google Scholar 

  12. J.E. Alam et al., Int. J. Mod. Phys. A 12, 5151–5160 (1997). https://doi.org/10.1142/S0217751X97002759

    Article  ADS  Google Scholar 

  13. M. Jezabek, J. Szwed, Acta Phys. Pol. B 14, 599 (1983)

    Google Scholar 

  14. L. Lagerkvist, F. Samuelson, Bachelor Thesis in Theoretical Physics presented to the Royal Institute of Technology (Sweden), 2015. Available online http://www.diva-portal.se/smash/get/diva2:813446/FULLTEXT01.pdf

  15. S.J. Brodsky, C.D. Roberts, R. Shrock, P.C. Tandy, Phys. Rev. C 85, 065202 (2012). https://doi.org/10.1103/PhysRevC.85.065202

    Article  ADS  Google Scholar 

  16. C. Feuchter, H. Reinhardt, Phys. Rev. D 70, 105021 (2004). https://doi.org/10.1103/PhysRevD.70.105021

    Article  ADS  MathSciNet  Google Scholar 

  17. J. Meyers, E.S. Swanson, Phys. Rev. D 87, 036009 (2013). https://doi.org/10.1103/PhysRevD.87.036009

    Article  ADS  Google Scholar 

  18. M.Q. Huber, C.S. Fischer, H. Sanchis-Alepuz, Eur. Phys. J. C 80, 1077 (2020). https://doi.org/10.1140/epjc/s10052-020-08649-6

    Article  ADS  Google Scholar 

  19. H. Sanchis-Alepuz, C.S. Fischer, C. Kellermann, L. von Smekal, Phys. Rev. D 92, 034001 (2015). https://doi.org/10.1103/PhysRevD.92.034001

    Article  ADS  Google Scholar 

  20. E.V. Souza et al., Eur. Phys. J. A 56, 25 (2020). https://doi.org/10.1140/epja/s10050-020-00041-y

    Article  ADS  Google Scholar 

  21. L.P. Kaptari, B. Kämpfer, Few Body Syst. 61, 28 (2020). https://doi.org/10.1007/s00601-020-01562-4

    Article  ADS  Google Scholar 

  22. T.D. Lee, Particle Physics and Introduction to Field Theory, Contemp. Concepts Phys, vol. 1 (Harwood Academic, New York, 1981), pp. 1–865

    Google Scholar 

  23. V. Vento, Eur. Phys. J. A 53, 185 (2017). https://doi.org/10.1140/epja/i2017-12378-2

    Article  ADS  Google Scholar 

  24. R.C. Brower, S.D. Mathur, C.I. Tan, Nucl. Phys. B 587, 249–276 (2000). https://doi.org/10.1016/S0550-3213(00)00435-1

    Article  ADS  Google Scholar 

  25. P. Bicudo, Contribution to 2nd Panda Physics Workshop. arXiv:hep-ph/0405223

  26. E. Gregory, A. Irving, B. Lucini, C. McNeile, A. Rago, C. Richards, E. Rinaldi, JHEP 10, 170 (2012). https://doi.org/10.1007/JHEP10(2012)170

    Article  ADS  Google Scholar 

  27. S. Wen, Z. Zhang, J. Liu, Phys. Rev. D 82, 016003 (2010). https://doi.org/10.1103/PhysRevD.82.016003

    Article  ADS  Google Scholar 

  28. W.L. Wang, Z.Y. Zhang, Phys. Rev. C 84, 054006 (2011). https://doi.org/10.1103/PhysRevC.84.054006

    Article  ADS  Google Scholar 

  29. A.M. Torres, K.P. Khemchandani, F.S. Navarra, M. Nielsen, E. Oset, Phys. Lett. B 719, 388–393 (2013). https://doi.org/10.1016/j.physletb.2013.01.036

    Article  ADS  Google Scholar 

  30. J. Sexton, A. Vaccarino, D. Weingarten, Nucl. Phys. B Proc. Suppl. 47, 128–135 (1996). https://doi.org/10.1016/0920-5632(96)00038-2

    Article  ADS  Google Scholar 

  31. P. Bicudo, S.R. Cotanch, F.J. Llanes-Estrada, D.G. Robertson, Eur. Phys. J. C 52, 363–374 (2007). https://doi.org/10.1140/epjc/s10052-007-0377-5

    Article  ADS  Google Scholar 

  32. L. Burakovsky, P.R. Page, Phys. Rev. D 59, 014022 (1999). https://doi.org/10.1103/PhysRevD.59.079902

    Article  ADS  Google Scholar 

  33. M. Iwasaki, S.I. Nawa, T. Sanada, F. Takagi, Phys. Rev. D 68, 074007 (2003). https://doi.org/10.1103/PhysRevD.68.074007

    Article  ADS  Google Scholar 

  34. P.A. Zyla et al. [Particle Data Group], PTEP 2020, 083C01 (2020). https://doi.org/10.1093/ptep/ptaa104

  35. C. Rosenzweig, A. Salomone, J. Schechter, Phys. Rev. D 24, 2545–2548 (1981). https://doi.org/10.1103/PhysRevD.24.2545

    Article  ADS  Google Scholar 

  36. H.Y. Cheng, C.K. Chua, K.F. Liu, Phys. Rev. D 74, 094005 (2006). https://doi.org/10.1103/PhysRevD.74.094005

    Article  ADS  Google Scholar 

  37. C. McNeile et al., UKQCD. Phys. Rev. D 63, 114503 (2001). https://doi.org/10.1103/PhysRevD.63.114503

  38. S. Narison, Nucl. Phys. B 509, 312–356 (1998). https://doi.org/10.1016/S0550-3213(97)00562-2

    Article  ADS  Google Scholar 

  39. F.J. Llanes-Estrada, S.R. Cotanch, Phys. Rev. Lett. 84, 1102–1105 (2000). https://doi.org/10.1103/PhysRevLett.84.1102

    Article  ADS  Google Scholar 

  40. T. Cohen, F.J. Llanes-Estrada, J.R. Pelaez, J. Ruiz de Elvira, Phys. Rev. D 90, 036003 (2014). https://doi.org/10.1103/PhysRevD.90.036003

    Article  ADS  Google Scholar 

  41. F.J. Llanes-Estrada, J.R. Pelaez, J. Ruiz de Elvira, Nucl. Phys. B Proc. Suppl. 207–208, 169–172 (2010). https://doi.org/10.1016/j.nuclphysbps.2010.10.044

    Article  ADS  Google Scholar 

  42. K.T. Chao, X.G. He, J.P. Ma, Eur. Phys. J. C 55, 417–421 (2008). https://doi.org/10.1140/epjc/s10052-008-0606-6

    Article  ADS  Google Scholar 

  43. K.T. Chao, X.G. He, J.P. Ma, Phys. Rev. Lett. 98, 149103 (2007). https://doi.org/10.1103/PhysRevLett.98.149103

    Article  ADS  Google Scholar 

  44. M.S. Chanowitz, Phys. Rev. Lett. 98, 149104 (2007). https://doi.org/10.1103/PhysRevLett.98.149104

    Article  ADS  Google Scholar 

  45. C. Amsler, F.E. Close, Phys. Rev. D 53, 295–311 (1996). https://doi.org/10.1103/PhysRevD.53.295

    Article  ADS  Google Scholar 

  46. F. Giacosa, T. Gutsche, V.E. Lyubovitskij, A. Faessler, Phys. Rev. D 72, 094006 (2005). https://doi.org/10.1103/PhysRevD.72.094006

    Article  ADS  Google Scholar 

  47. S. Janowski, F. Giacosa, D.H. Rischke, Phys. Rev. D 90, 114005 (2014). https://doi.org/10.1103/PhysRevD.90.114005

    Article  ADS  Google Scholar 

  48. M. Chanowitz, Phys. Rev. Lett. 95, 172001 (2005). https://doi.org/10.1103/PhysRevLett.95.172001

    Article  ADS  Google Scholar 

  49. M. Albaladejo, J.A. Oller, Phys. Rev. Lett. 101, 252002 (2008). https://doi.org/10.1103/PhysRevLett.101.252002

    Article  ADS  Google Scholar 

  50. A. Pimikov et al., Phys. Rev. D 96, 114024 (2017). https://doi.org/10.1103/PhysRevD.96.114024

    Article  ADS  Google Scholar 

  51. C.F. Qiao, L. Tang, Phys. Rev. Lett. 113, 221601 (2014). https://doi.org/10.1103/PhysRevLett.113.221601

    Article  ADS  Google Scholar 

  52. F.J. Llanes-Estrada, P. Bicudo, S.R. Cotanch, Phys. Rev. Lett. 96, 081601 (2006). https://doi.org/10.1103/PhysRevLett.96.081601

    Article  ADS  Google Scholar 

  53. C.F. Qiao, L. Tang, Reply to arXiv:1702.06634 and comment on arXiv:1611.08698, at arXiv:1704.08589 [hep-ph]

  54. L. Tang, C.F. Qiao, Nucl. Phys. B 904, 282–296 (2016). https://doi.org/10.1016/j.nuclphysb.2016.01.017

    Article  ADS  Google Scholar 

  55. F.E. Close, G.R. Farrar, Z.P. Li, Phys. Rev. D 55, 5749–5766 (1997). https://doi.org/10.1103/PhysRevD.55.5749

    Article  ADS  Google Scholar 

  56. X.D. Guo et al. arXiv:2003.07116 [hep-ph]

  57. Y. Chen et al., PoS LATTICE2013, 435 (2014). https://doi.org/10.22323/1.187.0435

    Article  Google Scholar 

  58. M. Tanabashi et al., [Particle Data Group]. Phys. Rev. D 98, 030001 (2018). https://doi.org/10.1103/PhysRevD.98.030001

  59. H.Y. Cheng, C.K. Chua, K.F. Liu, Phys. Rev. D 92, 094006 (2015). https://doi.org/10.1103/PhysRevD.92.094006

    Article  ADS  Google Scholar 

  60. H. Li, Nucl. Phys. B Proc. Suppl. 162, 222–227 (2006). https://doi.org/10.1016/j.nuclphysbps.2006.10.001

    Article  ADS  Google Scholar 

  61. T. Regge, Nuovo Cim. 14, 951 (1959). https://doi.org/10.1007/BF02728177

    Article  ADS  Google Scholar 

  62. A. Donnachie, P.V. Landshoff, Phys. Lett. B 727, 500–505 (2013). https://doi.org/10.1016/j.physletb.2013.10.068

    Article  ADS  Google Scholar 

  63. J.R. Peláez, J.A. Carrasco, J.T. Londergan, J. Nebreda, A.P. Szczepaniak, Acta Phys. Pol. Supp. 8, 89–94 (2015). https://doi.org/10.5506/APhysPolBSupp.8.89

    Article  Google Scholar 

  64. M.M. Brisudova, L. Burakovsky, J.T. Goldman, Phys. Rev. D 58, 114015 (1998). https://doi.org/10.1103/PhysRevD.58.114015

    Article  ADS  Google Scholar 

  65. F.J. Llanes-Estrada, S.R. Cotanch, P.J.A. de Bicudo, J.E.F.T. Ribeiro, A.P. Szczepaniak, Nucl. Phys. A 710, 45–54 (2002). https://doi.org/10.1016/S0375-9474(02)01090-4

    Article  ADS  Google Scholar 

  66. F. Buisseret, V. Mathieu, C. Semay, Phys. Rev. D 80, 074021 (2009). https://doi.org/10.1103/PhysRevD.80.074021

    Article  ADS  Google Scholar 

  67. V. Mathieu, C. Semay, B. Silvestre-Brac, Phys. Rev. D 77, 094009 (2008). https://doi.org/10.1103/PhysRevD.77.094009

    Article  ADS  Google Scholar 

  68. G.S. Sharov, Phys. Atom. Nucl. 71, 574–582 (2008). https://doi.org/10.1007/s11450-008-3017-0

    Article  ADS  Google Scholar 

  69. L.G. Mestres, P. Aurenche, Z. Phys. C 2, 229 (1979). https://doi.org/10.1007/BF01474666

    Article  ADS  Google Scholar 

  70. Y.A. Simonov, Phys. Lett. B 249, 514–518 (1990). https://doi.org/10.1016/0370-2693(90)91026-8

    Article  ADS  Google Scholar 

  71. A.B. Kaidalov, Y.A. Simonov, Phys. Lett. B 477, 163–170 (2000). https://doi.org/10.1016/S0370-2693(00)00202-1

    Article  ADS  Google Scholar 

  72. J. Greensite, Lect. Notes Phys. 821, 1–211 (2011). https://doi.org/10.1007/978-3-642-14382-3

    Article  Google Scholar 

  73. G.A. Jaroszkiewicz, P.V. Landshoff, Phys. Rev. D 10, 170–174 (1974). https://doi.org/10.1103/PhysRevD.10.170

    Article  ADS  Google Scholar 

  74. A.P. Szczepaniak, E.S. Swanson, Phys. Lett. B 577, 61–66 (2003). https://doi.org/10.1016/j.physletb.2003.10.008

    Article  ADS  Google Scholar 

  75. Y. Chen et al., Phys. Rev. D 73, 014516 (2006). https://doi.org/10.1103/PhysRevD.73.014516

    Article  ADS  Google Scholar 

  76. M. Rinaldi, PoS LC2019, 094 (2020). https://doi.org/10.22323/1.374.0094

    Article  Google Scholar 

  77. M. Rinaldi, V. Vento, Eur. Phys. J. A 54, 151 (2018). https://doi.org/10.1140/epja/i2018-12600-9

    Article  ADS  Google Scholar 

  78. M. Rinaldi, V. Vento, J. Phys. G 47, 055104 (2020). https://doi.org/10.1088/1361-6471/ab72b2

    Article  ADS  Google Scholar 

  79. M. Rinaldi, V. Vento, Eur. Phys. J. A 54, 151 (2018). https://doi.org/10.1140/epja/i2018-12600-9: and a recent preprint, arXiv:2101.02616 [hep-ph]

  80. I. Szanyi, L. Jenkovszky, R. Schicker, V. Svintozelskyi, Nucl. Phys. A 998, 121728 (2020). https://doi.org/10.1016/j.nuclphysa.2020.121728

    Article  Google Scholar 

  81. T. Csörgő, T. Novák, R. Pasechnik, A. Ster, I. Szanyi, arXiv:2004.07318 [hep-ph]

  82. C. Royon, arXiv:2012.03150 [hep-ex]

  83. J. Bartels, L.N. Lipatov, G.P. Vacca, Phys. Lett. B 477, 178–186 (2000). https://doi.org/10.1016/S0370-2693(00)00221-5

    Article  ADS  Google Scholar 

  84. A.B. Kaidalov, Y.A. Simonov, Phys. Lett. B 636, 101–106 (2006). https://doi.org/10.1016/j.physletb.2006.03.032

    Article  ADS  Google Scholar 

  85. M. Cardoso, P. Bicudo, Phys. Rev. D 78, 074508 (2008). https://doi.org/10.1103/PhysRevD.78.074508

    Article  ADS  Google Scholar 

  86. A. Donnachie, P.V. Landshoff, Phys. Lett. B 798, 135008 (2019). https://doi.org/10.1016/j.physletb.2019.135008

    Article  Google Scholar 

  87. G. Pancheri, S. Pacetti, Y. Srivastava, Phys. Rev. D 99, 034014 (2019). https://doi.org/10.1103/PhysRevD.99.034014

    Article  ADS  Google Scholar 

  88. V.V. Ezhela, V.A. Petrov, N.P. Tkachenko, A.A. Logunov, arXiv:2003.03817 [hep-ph]. (To appear in Phys. Atom. Nucl. 84, 2 (2021))

  89. V.I. Belousov, V.V. Ezhela, N.P. Tkachenko, Phys. Atom. Nucl. 83, 720–730 (2020). https://doi.org/10.1134/S1063778820050051

    Article  ADS  Google Scholar 

  90. S. Cho et al. [ExHIC], Prog. Part. Nucl. Phys. 95, 279–322 (2017). https://doi.org/10.1016/j.ppnp.2017.02.002

  91. T. Yepez-Martinez, A.P. Szczepaniak, H. Reinhardt, Phys. Rev. D 86, 076010 (2012). https://doi.org/10.1103/PhysRevD.86.076010

    Article  ADS  Google Scholar 

  92. L.M. Abreu, F.J. Llanes-Estrada, https://doi.org/10.13140/RG.2.2.21630.61764. arXiv:2008.12031 [hep-ph]

  93. H. Stoecker et al., J. Phys. G 43, 015105 (2016). https://doi.org/10.1088/0954-3899/43/1/015105

    Article  ADS  Google Scholar 

  94. S.J. Brodsky, G.R. Farrar, Phys. Rev. Lett. 31, 1153–1156 (1973). https://doi.org/10.1103/PhysRevLett.31.1153

    Article  ADS  Google Scholar 

  95. V.A. Matveev, R.M. Muradian, A.N. Tavkhelidze, Lett. Nuovo Cim. 7, 719–723 (1973). https://doi.org/10.1007/BF02728133

    Article  Google Scholar 

  96. D. Amati, L. Caneschi, R. Jengo, Nuovo Cim. A 58, 783–803 (1968). https://doi.org/10.1007/BF02825370

    Article  ADS  Google Scholar 

  97. M. Ciafaloni, Phys. Rev. 176, 1898–1904 (1968). https://doi.org/10.1103/PhysRev.176.1898

    Article  ADS  Google Scholar 

  98. S.J. Brodsky, G.R. Farrar, Phys. Rev. D 11, 1309 (1975). https://doi.org/10.1103/PhysRevD.11.1309

    Article  ADS  Google Scholar 

  99. S.J. Brodsky, G.P. Lepage, Phys. Rev. D 24, 2848 (1981). https://doi.org/10.1103/PhysRevD.24.2848

    Article  ADS  Google Scholar 

  100. S.J. Brodsky, F.J. Llanes-Estrada, Phys. Lett. B 793, 405–410 (2019). https://doi.org/10.1016/j.physletb.2019.05.011

    Article  ADS  MathSciNet  Google Scholar 

  101. F.J. Llanes-Estrada, S.J. Brodsky, PoS Confinement2018, 262 (2018). https://doi.org/10.22323/1.336.0262

    Article  Google Scholar 

  102. J.V. Bennett, Ph.D. dissertation presented at Indiana University, downloadable from https://inspirehep.net/literature/1615235. AAT-3620552

  103. D. Black, M. Harada, J. Schechter, Phys. Rev. D 73, 054017 (2006). https://doi.org/10.1103/PhysRevD.73.054017

    Article  ADS  Google Scholar 

  104. M. Albaladejo, J.A. Oller, L. Roca, Phys. Rev. D 82, 094019 (2010). https://doi.org/10.1103/PhysRevD.82.094019

    Article  ADS  Google Scholar 

  105. W. Liang, C.W. Xiao, E. Oset, Phys. Rev. D 88, 114024 (2013). https://doi.org/10.1103/PhysRevD.88.114024

    Article  ADS  Google Scholar 

  106. A. Masoni, C. Cicalo, G.L. Usai, J. Phys. G 32, R293–R335 (2006). https://doi.org/10.1088/0954-3899/32/9/R01

    Article  ADS  Google Scholar 

  107. G. Hao, C.F. Qiao, A.L. Zhang, Phys. Lett. B 642, 53–61 (2006). https://doi.org/10.1016/j.physletb.2006.09.031

    Article  ADS  Google Scholar 

  108. X.G. Wu, J.J. Wu, Q. Zhao, B.S. Zou, Phys. Rev. D 87, 014023 (2013). https://doi.org/10.1103/PhysRevD.87.014023

    Article  ADS  Google Scholar 

  109. P. Pakhlov et al., [Belle]. Phys. Rev. D 79, 071101 (2009). https://doi.org/10.1103/PhysRevD.79.071101

  110. B. Shwartz [Belle II], Frascati Phys. Ser. 69, 176–181 (2019)

  111. S. Uehara [Belle], Nucl. Phys. B Proc. Suppl. 162, 299–304 (2006). https://doi.org/10.1016/j.nuclphysbps.2006.09.094

  112. A.B. Wakely, C.E. Carlson, Phys. Rev. D 45, 1796–1799 (1992). https://doi.org/10.1103/PhysRevD.45.1796

    Article  ADS  Google Scholar 

  113. J.M. Roney, PoS LeptonPhoton2019, 109 (2019). https://doi.org/10.22323/1.367.0109

    Article  Google Scholar 

  114. G. Boca [PANDA], EPJ Web Conf. 95, 01001 (2015). https://doi.org/10.1051/epjconf/20149501001

  115. N. Brambilla et al., Eur. Phys. J. C 74, 2981 (2014). https://doi.org/10.1140/epjc/s10052-014-2981-5

    Article  Google Scholar 

  116. A. Belias [PANDA], JINST 15, C10001 (2020). https://doi.org/10.1088/1748-0221/15/10/C10001

  117. T. Gutsche, S. Kuleshov, V.E. Lyubovitskij, I.T. Obukhovsky, Phys. Rev. D 94, 034010 (2016). https://doi.org/10.1103/PhysRevD.94.034010

    Article  ADS  Google Scholar 

  118. D. Blas, J. Martin Camalich, J.A. Oller, arXiv:2010.12459 [hep-th]

  119. N. Yamanaka, H. Iida, A. Nakamura, M. Wakayama, Phys. Rev. D 102, 054507 (2020). https://doi.org/10.1103/PhysRevD.102.054507

    Article  ADS  MathSciNet  Google Scholar 

  120. N. Yamanaka, H. Iida, A. Nakamura, M. Wakayama, Phys. Lett. B 813, 136056 (2021). https://doi.org/10.1016/j.physletb.2020.136056

    Article  Google Scholar 

Download references

Acknowledgements

This publication is supported by EU Horizon 2020 research and innovation programme, STRONG-2020 project, under grant agreement No 824093; grants MINECO:FPA2016-75654-C2-1-P, MICINN: PID2019-108655GB-I00, PID2019-106080GB-C21 (Spain); Universidad Complutense de Madrid under research group 910309 and the IPARCOS institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe J. Llanes-Estrada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llanes-Estrada, F.J. Glueballs as the Ithaca of meson spectroscopy. Eur. Phys. J. Spec. Top. 230, 1575–1592 (2021). https://doi.org/10.1140/epjs/s11734-021-00143-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00143-8

Navigation