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Abstract The generation of high-order harmonics in finite, hexagonal nanoribbons is simulated. Ribbons
with armchair and zig-zag edges are investigated by using a tight-binding approach with only nearest-
neighbor hopping. By turning an alternating on-site potential off or on, the system describes for example
graphene or hexagonal boron nitride, respectively. The incoming laser pulse is linearly polarized along with
the ribbons. The emitted light has a polarization component parallel to the polarization of the incoming
field. The presence or absence of a polarization component perpendicular to the polarization of the incoming
field can be explained by the symmetry of the ribbons. Characteristic features in the harmonic spectra for
the finite ribbons are analyzed with the help of the band structure for the corresponding periodic systems.

1 Introduction

Ultrafast dynamics in condensed matter systems have
been studied intensively in recent years [1–8]. In partic-
ular, high-order harmonic generation (HHG) has proven
to be a powerful tool as it is able to probe static and
dynamic properties of the solid target by all-optical
means [9–13].

HHG was initially observed for atoms and molecules
in the gas phase. For non-perturbative laser intensities
and photon energies well below the ionization potential,
the energy of the emitted photons can be large mul-
tiples of the incident photon’s energy, the high-order
harmonics.

The mechanisms underlying HHG in solids are sim-
ilar to those in the gas phase. For instance, the cel-
ebrated semi-classical three-step model [14,15] intro-
duced for isolated atoms, where, in the first step, the
electron is excited into the continuum. In the second
step, the electron propagates in the presence of the
laser-field, and, in the third step, it recombines with
the ion upon generating a photon with an energy given
by the kinetic energy of the electron at the time of
recombination and the ionization potential. A similar
model exists for solids [16,17] where, first, the elec-
tron is excited from the valence band to the conduc-
tion band, second, the electron in the conduction band
and the hole in the valence band propagate in the pres-
ence of the laser field, and, third, the electron and hole
recombine upon generating a harmonic photon.
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If the solid is an insulator or semi-conductor, it has
a non-vanishing band gap between the valence and the
conduction band. The three-step model of solid-state
HHG provides a way to separate two different contri-
butions of harmonic radiation [16]. First, the movement
of the electron (and hole) inside the bands create intra-
band harmonics. As the electron and hole recombine,
a transition between both bands occur. The radiation
from this transition is called interband harmonics.

Many studies focus on the bulk of a solid. In real-
ity, solids are finite and have edges. Edge states might
cause interesting effects in high-harmonic spectra, in
particular when they are topological in nature [18–20].
In this paper, we focus on the high-harmonic spectra
from finite systems and compare with the correspond-
ing result for the bulk. We restrict ourselves to the topo-
logically trivial phase in this work.

Graphene is one particularly interesting two-
dimensional solid because of its relativistic Dirac cones.
In graphene, the atoms form a hexagonal lattice struc-
ture. Hexagonal boron nitride (h-BN) is a different
example with the same lattice structure. HHG in hexag-
onal lattice structures has been studied for the bulk and
for ribbons for topologically trivial graphene and h-BN
[21–25] and the topologically nontrivial Haldane model
[26–28].

In this work, we investigate the generation of high-
harmonics in hexagonal nanoribbons for two differ-
ent edge configurations: zig-zag and armchair. Rib-
bons with and without alternating on-site potentials
are investigated in the topologically trivial phase only.
The system without alternating on-site potential con-
tains one atomic element (as, e.g., in graphene) whereas
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Fig. 1 Sketch of ribbons built from hexagons, for finite
(a, b) and infinite (c, d) ribbons. a, c Armchair and b, d
zig-zag configuration. The distance between nearest neigh-
bors (indicated by solid lines) is a, the hopping amplitude
between them is t1 ∈ R. An alternating on-site potential M
(−M) at sites A (B), indicated by unfilled (filled) circles,
is included. The unit cells are marked by dotted rectangles.

The lattice constant is da for the armchair and dzz for the
zig-zag ribbon. Here, the finite armchair ribbon contains
Nhex = 4, the zig-zag Nhex = 6 hexagons (unit cells). For
the infinite ribbon (c, d), the hoppings inside a unit cell
m = n and to neighboring unit cells m = n ± 1 are indi-
cated by solid lines. The lattice sites inside a unit cell are
labeled by α (red)

two different elements are contained in the case of alter-
nating on-site potential (e.g., h-BN).

The outline of this work is as follows. In Sect. 2, the
basic theory is summarized, starting with the finite sys-
tem without external field in Sect. 2.1. We show the cal-
culation and the results for the band structures for the
armchair (Sect. 2.1.1) and the zig-zag (Sect. 2.1.2) rib-
bon with periodic boundary conditions. In Sect. 2.2 the
coupling to an external field is presented. HHG spec-
tra for the finite armchair (Sect. 3.1) and finite zig-zag
(Sect. 3.2) ribbons are discussed.

2 Theory

In this work, we investigate hexagonal ribbons in two
different configurations, armchair (Fig. 1a) and zig-zag
(Fig. 1b). We consider two different types of sites: A and
B. The on-site potential is M (−M) on lattice sites A
(B). In Fig. 1, the lattice sites A and B are indicated
by unfilled and filled circles, respectively. The lattice
constant for the armchair ribbon is given by da = 3 a,
where a is the distance between two neighboring sites.
For the zig-zag ribbon, the lattice constant is dzz =√

3 a. Atomic units (a.u.), � = |e| = me = 4πε0 = 1,
are used if not stated otherwise.

2.1 Static system

The systems have N atomic sites. The atomic orbital at
site i is denoted as |i〉. A general single-electron wave-
function is given by

|ψ〉 =
N∑

i=1

gi|i〉. (1)

The Hamiltonian in position space and tight-binding
approximation reads

Ĥ0 = t1
∑

<i,j>

(|j〉〈i| + h.c.)

+M

(
∑

i∈A

|i〉〈i| −
∑

i∈B

|i〉〈i|
)

, (2)

where the sum
∑

<i,j> runs over nearest neighbors
i and j and the sums

∑
i∈A,B over sites A or B,

respectively. The parameter t1 is the hopping ampli-
tude between adjacent sites. Hopping between next-
nearest neighbors is not considered in this work. The
eigenstates |ψi〉 fulfill the time-independent Schrödinger
equation (TISE)

Ĥ0|ψi〉 = Ei|ψi〉. (3)

In the following, we describe the propagation of states
|ψ〉 in position space for ribbons with Nhex hexagons
(Fig. 1a, b) in time. However, one aim of this work is to
relate features in the harmonic spectrum of the finite
ribbons with energy differences in the band structure of
the corresponding ribbon bulk. Hence, band structures
are calculated for the ribbons with periodic boundary
conditions in x-direction, see Fig. 1c and d. The result-
ing Hamiltonian will be given in crystal-momentum
space (k-space).

For the distance between adjacent sites we take the
value for graphene [29], i.e., a = 2.68 a.u.� 1.42 Å. For
the nearest-neighbor hopping amplitude we use data
from simulations without tight-binding approximation
[30] with which we want to compare. To that end the
energies of an armchair ribbon with four unit cells
were calculated, and the nearest-neighbor hopping was
adjusted till the band gap was identical for both meth-
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Fig. 2 Band structure for the bulk of the ribbon with armchair (a, b) and zig-zag (c, d) edges for M = 0 (a, c) and
M = 0.12 (b, d) in the first Brillouin zone

ods. As a result we find t1 = −0.07776 ≈ −2.116 eV.
The negative sign of t1 is chosen to obey the node rule
of quantum mechanics, as in this case the coefficients
gi have all the same sign for the state with the lowest
energy.

2.1.1 Armchair ribbon

The calculation leading to the bulk-Hamiltonian for the
armchair ribbon is in Appendix A. The unit cell con-
tains six sites, see Fig. 1c. Hence, there are six bands,
see Fig. 2a and b. The energies are calculated numeri-
cally.

The armchair ribbon has a band gap of ΔEgap =
0.08338 for a vanishing on-site potential M = 0 (Fig.
2a). The band gap ΔEgap increases with the on-site
potential M (Fig. 2b). The band structure is symmetric
around E = 0. Two of the bands are flat, their energy
is constant over the whole Brillouin zone. It is given by
Eflat = ±

√
t21 + M2, see Appendix A.

In the finite ribbon with Nhex hexagons, there are also
Nhex states that have the same energy. Their energy is
identical to the energy of the flat bands in the bulk.

2.1.2 Zig-zag ribbon

The bulk-Hamiltonian for the zig-zag ribbon was calcu-
lated in [28]. Here, we do not consider hopping between
next-nearest neighbors as in [28] (i.e., t2 = 0). The bulk-
Hamiltonian reads

Ĥbulk,zz(k) =

⎛

⎜⎝

M T1(k) 0 0
T1(ki) −M t1 0

0 t1 M T1(k)
0 0 T1(k) −M

⎞

⎟⎠ , (4)

with T1 = 2t1 cos(kidzz/2). The TISE for the bulk is
given by

Ĥbulk,zzu(k) = E(k)u(k), (5)

with the periodic factor u(k) = (u1(k), u2(k), u3(k), u4(k))�

in the Bloch-like ansatz.
Other than for the armchair ribbon, the energies of

the zig-zag ribbon can be written in a compact, analyt-
ical form

E(k) = ±
√

M2 + t21/4
(√

16 cos2 (k dzz/2) + 1 ± 1
)2

,

(6)

where both ± are independent, leading to four bands.
Results with and without M are shown in Fig. 2c, and
d. For a vanishing on-site potential (c) there is no band
gap between the bands with a negative energy (valance
bands) and the bands with a positive energy (conduc-
tion bands). However, only transitions between the two
black, solid or the two red, dashed bands are allowed for
a linearly polarized laser field in dipole approximation
[31,32]. This creates an effective band gap, ΔEgap,0.

A band gap centered at E = 0 appears for non-
vanishing on-site potential. It is given by ΔEgap =
2|M |, an example is shown in Fig. 2d. Transitions
between all bands are allowed for M �= 0.

2.2 Coupling to an external field

The coupling of the systems to an external field and
the propagation of an electronic wavefunction in time
is described in Ref. [28].

The vector potential is linearly polarized along the
x-direction (i.e., along the ribbons). For times 0 ≤ t ≤
2πncyc/ω0, the vector potential is given by

A(t) = A0 sin2

(
ω0t

2ncyc

)
sin(ω0t)ex, (7)

and it is zero otherwise. The following laser parameters
are used if not stated otherwise: amplitude A0 = 0.2
(intensity � 7.9×1010 Wcm−2), angular frequency ω0 =
7.5 ·10−3 (i.e., wavelength λ = 6.1rmum), and the pulse
comprises ncyc = 4 cycles.

The total current is given by

J(t) =
∑

l

〈Ψl(t)|ĵ(t)|Ψl(t)〉, (8)

i.e., the sum over all currents arising from the occupied
states |Ψl(t)〉, propagated in time. The current operator
reads [33]
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Fig. 3 (a) High-order harmonic spectra for a finite arm-
chair ribbon with Nhex = 4 hexagons as function of the
on-site potential M . The spectra show the emission polar-
ized parallel to the polarization direction of the incoming
laser field. The line representing ΔEgap (ΔEmax) indicates

the minimal band gap (maximal energy difference) between
the valence and conduction bands of the respective periodic
system. The horizontal lines mark the on-site potential of
the spectra shown in (b)

ĵ(t) = −i
∑

i,j

(ri − rj) |i〉〈i|H(t)|j〉〈j|, (9)

with ri,j being the position of the sites i, j with their
respective orbitals |i〉 and |j〉 and H(t) the time-
dependent Hamiltonian (see Ref. [28]). It is assumed
that at the beginning of the pulse, all eigenstates with
negative energy (i.e., below the Fermi level) are occu-
pied.

The intensity of the emitted light is proportional to

∣∣P‖,⊥(ω)
∣∣2 =

∣∣∣FFT
[
J̇x,y(t)

]∣∣∣
2

. (10)

The symbols ‖ and ⊥ denote the parallel (x-direction)
and perpendicular (y-direction) polarization direction
with respect to the polarization direction of the linear
polarized laser pulse.

3 Results

In this paper, we discuss the high-order harmonic spec-
tra for an armchair ribbon consisting of Nhex = 4
hexagons (N = 24) and a zig-zag ribbon built of
Nhex = 6 hexagons (N = 26). The results are compared
with simulations without the tight-binding approxima-
tion for systems of the same size [30]. We briefly discuss
the size-dependence of the zig-zag ribbon at the end of
this section.

3.1 Ribbon with armchair edges

The high-order harmonic spectra for parallel polariza-
tion direction as function of the on-site potential for the
armchair ribbon are shown in Fig. 3a. In addition, the
spectra for M = 0, M = 0.05, and M = 0.12 are shown
in Fig. 3b. The energy is given in units of the laser fre-
quency ω0 = 0.0075 (i.e., harmonic order). The laser
field is polarized linearly along the ribbon. Light with a

polarization direction perpendicular to the field is not
emitted. This is due to the symmetry of the system in
that direction (i.e., the y-direction) even with a non-
vanishing on-site potential (see Fig. 1a). In both plots,
the minimal band gaps of the periodic system between
valence and conduction band ΔEgap are indicated. The
band gap increases with the on-site potential M . The
line ΔEmax (Fig. 3a) shows the maximal energy dif-
ference between valence and conduction band. It also
increases with M . The horizontal lines in Fig. 3a mark
those Ms for which spectra are shown in Fig. 3b.

The band gap of the periodic system with vanishing
on-site potential is Egap = 0.0644 ≈ 8.6 ω0. For the
finite system with Nhex = 4 one finds a band gap of
0.08338 ≈ 11.1 ω0. The band gap of the finite system
is larger because there are only 24 eigenstates of the
Hamiltonian. Due to the restricted number of states,
the sampling of the energy spectrum is not sufficient to
capture the minimal band gap of the periodic ribbon. A
larger finite chain would resolve it but is not part of this
study. We refer to Ref. [34], where the size dependency
of a one-dimensional, linear chain was studied. For an
on-site potential of M = 0.12, the band gap of the finite
system is given by 0.245 ≈ 33.9 ω0 and that of the
periodic system is Egap = 0.248 = 33.1 ω0. Here, the
band gap of the finite and the band gap of the periodic
system are similar.

In the harmonic spectra, one can see that the har-
monic yield for small energies drops exponentially. Up
to the energy of the band gap, the harmonic yield is
relatively low. For energies larger than the band gap,
one observes a plateau where the yield is almost con-
stant. An ultimate cut-off is observed at an energy that
corresponds to the maximum energy difference between
valence and conduction bands ΔEmax. Transitions with
larger energies are not possible in the tight-binding
model. Hence, no harmonics are emitted at larger ener-
gies.

The harmonics below the band gap are dominated by
movement of electrons inside the bands [35], known as
intraband harmonics. Due to the fully occupied valence
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Fig. 4 Comparison of the harmonic yield (normalized to
the maximal harmonic yield) of the armchair ribbon for the
tight-binding model used in this work (TB) and the calcu-
lation without tight-binding approximation from Ref. [30].

For (a) the on-site potential is M = 0.0 (Vos = 0.0) and for
(b) it is M = 0.12 (Vos = 0.4). Vos is the used parameter of
the on-site potential in the reference

bands, there are electrons that move in opposite direc-
tions because of opposite band curvature, and there-
fore the emitted radiation by “individual” electrons
destructively interferes, leading to the drop in the har-
monic yield [18]. The plateau for larger energies is dom-
inated by transitions between the valence and conduc-
tion bands [35], called interband harmonics. The band
gap increases with the on-site potential M . As a conse-
quence, the smallest energy of the plateau-region shifts
to higher harmonic orders. The ultimate cut-off of the
plateau also increases, because the maximal energy dif-
ference of the bands also becomes larger with increas-
ing M . The onset and the cut-off of the plateau can
be estimated by the periodic system. Its minimal band
gap Egap and maximal energy difference Emax is plot-
ted in Fig. 3a. The colored-contour plot in Fig. 3a might
not be able to show the starting and beginning of the
plateau properly. It is better visible in Fig. 3b. The
colored vertical arrows indicate the band gap of the
respective periodic system. It agrees with the onset of
the plateau if the on-site potential M is non-zero. The
cut-off of the plateau for M = 0 is at around harmonic
order 50 and for M = 0.12 at around 60 harmonic
orders. The maximal energy difference of the periodic
system is given by ΔEmax = 0.375 ≈ 50.1 ω0 and
ΔEmax = 0.446 ≈ 59.4 ω0 for M = 0 and M = 0.12,
respectively, agreeing with the cut-offs. The plateau is
restricted to the region between Egap and Emax, as
expected.

The flat bands of the band structure (see Fig. 2a, b)
are separated by an energy of ΔEflat = 2|t1| = 0.1556 ≈
20.7 ω0 for M = 0. The harmonic spectrum shows a
peak at this energy. With increasing on-site potential
M , the energy difference between those bands increases,
indicated by the dotted line ΔEflat in Fig. 3a. There
are as many states with the same energy inside the
flat bands as there are hexagons in the ribbon. There-
fore, many possible transitions have the same transition
energy. This large number of transitions with identical
energies causes the peak in the spectrum.

The results presented so far are qualitatively the
same as the results in Ref. [30], in which no tight-

binding approximation is used. This can be seen from
Fig. 4. The system with an on-site potential of M =
0.12 has approximately the same band gap as the sys-
tem with an on-site potential of Vos = 0.4 in that
reference (Fig. 4b). The method without the tight-
binding approximation includes states above the con-
duction bands. Therefore, the spectra in that refer-
ence also show harmonics with larger energies than
ΔEmax. These harmonics are absent when using the
tight-binding approximation, here one should include
more bands in order to obtain the correct spectra. How-
ever, the suppressed harmonic yield below the band gap
is visible and also the slope of the plateau is similar.
The advantage of the tight-binding approximation is
the computational time. The algorithm here is approx-
imately three orders of magnitude faster than the one
in Ref. [30].

Note that the hopping parameter t1 is chosen to
fit the band gap of the systems for both methods.
However, the maximal energy difference Emax is dif-
ferent. One reason for that is the symmetry of the
tight-binding bulk Hamiltonian that enforces mirror-
symmetric valence and conduction bands about the
zero-energy axis. This symmetry is absent in the con-
tinuous description of Ref. [30].

3.2 Ribbon with zig-zag edges

Harmonic spectra for the finite zig-zag ribbon with
Nhex = 6 hexagons as function of M are shown in Fig. 5
in parallel (Fig. 5a) and perpendicular (Fig. 5b) polar-
ization direction with respect to the polarization of the
incoming laser field. In addition, Fig. 6 shows spectra
for three different on-site potentials M (Fig. 6a in paral-
lel and Fig. 6b in perpendicular polarization direction).
The corresponding M values are indicated by horizontal
lines in Fig. 5. The marked energies ΔEgap and ΔEmax

indicate the minimal band gap and the maximal energy
difference between valence and conduction band of the
periodic system, respectively.

In both figures, one can see that without on-site
potential, the zig-zag ribbon does not emit light per-
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(a) (b)

Fig. 5 Harmonic spectra for the finite zig-zag ribbon con-
taining Nhex = 6 hexagons as function of the on-site poten-
tial M . Spectra in parallel (a) and perpendicular (b) polar-
ization direction to the incoming field are shown. The line

ΔEgap indicates the minimal band gap, the line ΔEmax the
maximal gap between valence and conduction band as func-
tion of M for the periodic system

ΔEgap,0

ΔEgap

ΔEgap
(a) (b)

Fig. 6 High-order harmonic spectra of a finite zig-zag rib-
bon with Nhex = 6 hexagons for different on-site potentials
M for the parallel (a) and perpendicular (b) polarization

direction to the incoming field. The vertical arrows mark
the energy of the band gap for the respective periodic sys-
tem

pendicular to the polarization direction of the incoming
laser field (i.e., the y-direction). As the on-site poten-
tial becomes finite, the symmetry of the system in y-
direction is broken. This can be seen in Fig. 1b: the
on-site potential at the lowest sites (α = 1) is M , on
the topmost sites (α = 4) it is −M . As a consequence,
the electrons are attracted more towards the upper sites
than to the lower sites. Hence, light polarized in y-
direction is now also emitted, i.e., perpendicular to the
polarization of the incoming laser field, see Figs. 5b and
6b.

The band gap increases linearly with the on-site
potential M and vanishes for M = 0. The spectra with-
out on-site potential show an exponential decrease of
the harmonic yield. A typical drop similar to the one
for the armchair ribbon can be observed below har-
monic order 11, best seen in Fig. 6a. This drop of the
harmonic yield is explainable by the destructive inter-
ference of the intraband emission. One could expect
that the interband harmonics should compensate the
drop in the yield because of the vanishing band gap.
However, as was shown in Refs. [31,32], transitions
between certain bands are forbidden in the graphene
zig-zag ribbon. This fact was already indicated in Fig.
2c: transitions are only allowed between the lowest
valence and the lowest conduction band (black, solid

lines) and between the highest valence and conduc-
tion band (red, dashed lines). Therefore, the effective
minimal band gap of the periodic system is given by
ΔEgap,0 = |t1| = 0.07776 ≈ 10.4 ω0. This is in good
agreement with the onset of the plateau. The maximal
energy difference between the bands where transitions
are allowed is given by ΔEmax,0 = 0.321 ≈ 42.7 ω0,
which agrees well with the cut-off.

Further, as the band gap increases, we can see the
typical drop of the harmonic yield for energies below
ΔEgap. The plateau lies in an energy region between
ΔEgap and ΔEmax for both polarization directions.
This shows that the overall qualitative features in the
harmonic spectra of this small zig-zag nanoribbon can
be already understood with the help of the band struc-
ture of the periodic system. The results are similar to
simulations without tight-binding approximation [30].
The only difference is the presence of harmonics above
ΔEmax without tight-binding approximation due to
higher lying states, similar to the armchair ribbon.

As the on-site potential increases, the selection rule
for M = 0 does not apply anymore due to the broken
symmetry in y-direction. However, we observe for the
small system with Nhex = 6 and a small on-site poten-
tial that the spectra still show a drop in the harmonic
yield for small energies, indicating the destructive inter-
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Fig. 7 High-harmonic spectrum in parallel polarization
direction to the incoming field for a zig-zag ribbon with
Nhex = 15 hexagons for on-site potential M = 0 and M =
0.001. The amplitude of the vector potential is A0 = 0.05

ference of the intraband harmonics and an onset of the
interband plateau only at higher harmonic order than
expected from ΔEgap. Hence, transitions between the
highest valence band and the lowest conduction band
are still very unlikely in such a small, finite zig-zag rib-
bon, otherwise the interband harmonics would fill up
the drop of the intraband harmonic yield.

The approximation of a finite system by a periodic
system fits better for larger finite systems. In Fig. 7, the
harmonic spectrum in parallel polarization direction of
a finite chain containing Nhex = 15 hexagons is shown.
For a vanishing on-site potential M = 0.0, the drop in
the harmonic yield up to order 11 can be observed.

For a small on-site potential of M = 0.001 the har-
monic yield below the band gap is increased by sev-
eral orders. Still, both valence bands are fully occu-
pied, which means that the intraband harmonics inter-
fere destructively as for M = 0.0 due to the move-
ment of the electrons inside the bands. Obviously, the
interband harmonics compensate the dropping intra-
band harmonic yield and thus the minimal energy of
the interband harmonics must be close to zero. This
is only possible if transitions between all bands are
allowed, showing that for longer, finite zig-zag ribbons
the M = 0 selection rule breaks more abruptly for
slightly non-vanishing M than for shorter ribbons.

We note that in the calculation for Nhex = 15 we
chose the amplitude of the vector potential A0 = 0.05
(i.e., intensity � 7.9×1010 Wcm−2). For the same inten-
sity as before (A0 = 0.2) the yield drop for M = 0 is not
clearly visible. With increasing laser intensity the excur-
sion of the electrons along with the crystal momentum
increases, diminishing the destructive interference of
the intraband emission. As a result, the drop in the har-
monic yield is not as pronounced as for smaller intensi-
ties. The fact that in the small ribbon with Nhex = 6 the
drop is more pronounced might be due to the smaller
number of states that do not resemble well continuous
bands.

4 Summary and outlook

In this work, we simulated high-harmonic generation in
finite hexagonal nanoribbons with armchair and zig-zag

edges. In an intense laser field polarized linearly along
the ribbon, the armchair ribbon emits linearly polarized
light parallel to the polarization of the incoming field.
The zig-zag ribbon emits light parallel and perpendicu-
lar to the polarization of the incoming laser pulse if an
alternating on-site potential is included. Both ribbons
show a suppressed harmonic yield for energies below
the band gap. The band gap itself is determined by the
on-site potential. The main result of this manuscript
is that characteristic features in the harmonic spectra,
such as onset and cut-off of the interband-harmonics
plateau, can be understood with the help of the band
structure for the corresponding periodic systems. The
results for the finite ribbons are similar to those from
simulations without the tight-binding approximation.
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A Derivation of armchair bulk-Hamiltonian

For an armchair ribbon with N unit cells and periodic
boundary conditions, the Hamiltonian reads

Ĥarm
0 =

N∑

m=1

[
6∑

α=1

(
t1|m, α〉〈m, (α + 1) mod 6|

+ (−1)α+1 M

2
|m, α〉〈m, α|

)

+t1|m, 5〉〈m + 1, 2|] + h.c., (11)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. Spec. Top.

where we now write the state |i〉 at site i as |m, α〉 where α
indicates the site within unit cell m. In order to obtain the
bulk-Hamiltonian, we make a Bloch-like ansatz, taking the
relative position within a unit cell into account,

|ψ(k)〉 =
1√
N

N∑

m=1

eimkda |m〉⊗
(
u1(k)eikda/6|1〉 + u2(k)|2〉 + u3(k)eikda/6|3〉

+ u4(k)eikda/2|4〉 + u5(k)e2ikda/3|5〉
+u6(k)eikda/2|6〉

)
. (12)

Here, da = 3a is the lattice constant for the armchair
ribbon. We plug this ansatz into the time-independent
Schrödinger equation, Ĥ0|ψ(k)〉 = E(k)|ψ(k)〉, and multi-

ply by
√

Ne−im′kda〈m′| from the left, leading to

Ĥbulk,armu(k) = E(k)u(k), (13)

with

Ĥbulk,arm =

⎛

⎜⎜⎜⎜⎜⎜⎝

M t1e
−ikda/6 0 0 0 t1e

ikda/3

t1e
ikda/6 −M t1e

ikda/6 0 t1e
−ikda/3 0

0 t1e
−ikda/6 M t1e

ikda/3 0 0

0 0 t1e
−ikda/3 −M t1e

ikda/6 0

0 t1e
ikda/3 0 t1e

−ikda/6 M t1e
−ikda/6

t1e
−ikda/3 0 0 0 t1e

ikda/6 −M

⎞

⎟⎟⎟⎟⎟⎟⎠
, (14)

where u(k) = (u1(k), u2(k), u3(k), u4(k), u5(k), u6(k)). For
given k, one obtains six eigenstates uj(k) and energies Ej(k)
(j = 1, 2, . . . , 6). Hence, the system has six bands in the
tight-binding approximation. We solve the eigenvalue equa-
tions numerically for each k. However, we show the calcu-
lation of one band analytically. For the periodic part of the
Bloch-state we make the ansatz

uflat(k) = (β, 0, −β, −γ, 0, γ)� , (15)

where the values of β and γ are unknown and k-dependent.
Note that this state is zero at the connection points α = 2
and 5 to the neighboring hexagons (see Fig. 1(c)). We obtain

Ĥbulk,arm uflat(k) =

⎛

⎜⎜⎜⎜⎜⎜⎝

M β + t1 eikda/3 γ
0

− M β − t1 eikda/3 γ

M γ − t1 e−ikda/3 β
0

− M γ + t1 e−ikda/3 β

⎞

⎟⎟⎟⎟⎟⎟⎠

!
= Eflat (β, 0, −β, −γ, 0, γ)� .

(16)

This relation holds if

M β + t1 eikda/3 γ = Eflatβ (17)

and

M γ − t1 e−ikda/3 β = Eflatγ, (18)

resulting in the energy

Eflat = ±
√

t21 + M2. (19)

As this energy is independent of k, the corresponding two
bands are flat.

One can also show that the same energies are obtained
for a finite armchair ribbon containing Nhex hexagons. The
ansatz is that the state is zero everywhere except at one
hexagon, where it is given by Eq. (15). The same energy
(19) is obtained. The degeneracy is given by the number of
hexagons in the ribbon Nhex.
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