Skip to main content
Log in

Roles of quantum coherences in thermal machines

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Some of the oldest and most important applications of thermodynamics are operations of refrigeration as well as production of useful energy. Part of the efforts to understand and develop thermodynamics in the quantum regime have been focusing on harnessing quantum effects to such operations. In this review, we present the recent developments regarding the role of quantum coherences in the performances of thermal machines—the devices realising the above thermodynamic operations. While this is known to be an intricate subject, in part because being largely model-dependent, the review of the recent results allows us to identify some general tendencies and to suggest some future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. S. Carnot, Réflections Sur La Puissance Motrice Du Feu et Sur Les Machines Propres à Développer Cette Puissance (Bachelier, Paris, 1824)

    MATH  Google Scholar 

  2. H.E.D. Scovil, E.O. Schulz-DuBois, Phys. Rev. Lett. 2, 262 (1959)

    Article  ADS  Google Scholar 

  3. J. Geusic, E.O. Schulz-Du Bois, H.E.D. Scovil, Phys. Rev. 156, 343 (1967)

    Article  ADS  Google Scholar 

  4. A. Levy, D. Gelbwaser-Klimovsky, Quantum Features and Signatures of Quantum Thermal Machines, in Thermodynamics in the Quantum Regime Fundamental Theories of Physics, vol. 195, ed. by F. Binder, L. Correa, C. Gogolin, J. Anders, G. Adesso (Springer, Cham, 2018)

    Google Scholar 

  5. H..T. Quan, Yu.-xi Liu, C..P. Sun, Franco Nori, Phys. Rev. E 76, 031105 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  6. R. Kosloff, A. Levy, Annu. Rev. Phys. Chem. 65, 365–93 (2014)

    Article  ADS  Google Scholar 

  7. Mark T. Mitchison, Contemp. Phys. 60, 164 (2019)

    Article  ADS  Google Scholar 

  8. D. Gelbwaser-Klimovsky, G. Kurizki, Phys. Rev. E 90, 022102 (2014)

    Article  ADS  Google Scholar 

  9. X..L. Huang, Tao Wang, X..X. Yi, Phys. Rev. E 86, 051105 (2012)

    Article  ADS  Google Scholar 

  10. O. Abah, E. Lutz, Eur. Phys. Lett. 106, 20001 (2014)

    Article  ADS  Google Scholar 

  11. J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, E. Lutz, Phys. Rev. Lett. 112, 030602 (2014)

    Article  ADS  Google Scholar 

  12. G. Manzano, F. Galve, R. Zambrini, J.M.R. Parrondo, Phys. Rev. E 93, 052120 (2016)

    Article  ADS  Google Scholar 

  13. W. Niedenzu, D. Gelbwaser-Klimovsky, A.G. Kofman, G. Kurizki, New J. Phys. 18, 083012 (2016)

    Article  ADS  Google Scholar 

  14. W. Niedenzu, V. Mukherjee, A. Ghosh, A.G. Kofman, G. Kurizki, Nat. Commun. 9, 165 (2018)

    Article  ADS  Google Scholar 

  15. B. Xiao, R. Li, Phys. Lett. A 382, 3051–3057 (2018)

    Article  ADS  Google Scholar 

  16. R. Alicki, D. Gelbwaser-Klimovsky, New J. Phys. 17, 115012 (2015)

    Article  ADS  Google Scholar 

  17. B. Kumar Agarwalla, J..H. Jiang, D. Segal, Phys. Rev. B 96, 104304 (2017)

    Article  ADS  Google Scholar 

  18. A. Ferraro, S. Olivares, M. Paris, Gaussian States in Quantum Information (Bibliopolis, Napoli, 2005).

    Google Scholar 

  19. F. Curzon, B. Ahlborn, Am. J. Phys. 43, 22–24 (1975)

    Article  ADS  Google Scholar 

  20. J. Klaers, S. Faelt, A. Imamoglu, E. Togan, Phys. Rev. X 7, 031044 (2017)

    Google Scholar 

  21. C.L. Latune, I. Sinayskiy, F. Petruccione, Sci. Rep. 9, 3191 (2019)

    Article  ADS  Google Scholar 

  22. R. Alicki, arXiv:1401.7865. (2014)

  23. C.L. Latune, I. Sinayskiy, F. Petruccione, Quantum Sci. Technol. 4, 025005 (2019)

    Article  ADS  Google Scholar 

  24. C.L. Latune, I. Sinayskiy, F. Petruccione, Phys. Rev. Res. 1, 033097 (2019)

    Article  Google Scholar 

  25. H. Breuer, F. Petruccione, Theory of Open Quantum Systems (Oxford Publication, Oxford, 2002).

    MATH  Google Scholar 

  26. L.A. Correa, J.P. Palao, D. Alonso, G. Adesso, Sci. Rep. 4, 3949 (2014)

    Article  ADS  Google Scholar 

  27. C.B. Dağ, W. Niedenzu, Ö.E. Müstecaplıoǧlu, G. Kurizki, Entropy 18, 244 (2016)

    Article  ADS  Google Scholar 

  28. F.L.S. Rodrigues, G. De Chiara, M. Paternostro, G.T. Landi, Phys. Rev. Lett. 123, 140601 (2019)

    Article  ADS  Google Scholar 

  29. M.O. Scully, M.S. Zubairy, G.S. Agarwal, H. Walther, Science 299, 862 (2003)

    Article  ADS  Google Scholar 

  30. D. Türkpençe, Ö.E. Müstecaplıoǧlu, Phys. Rev. E 93, 012145 (2016)

    Article  ADS  Google Scholar 

  31. T. Guff, S. Daryanoosh, B.Q. Baragiola, A. Gilchrist, Phys. Rev. E 100, 032129 (2019)

    Article  ADS  Google Scholar 

  32. R. Dillenschneider, E. Lutz, EPL 8, 50003 (2009)

    Article  Google Scholar 

  33. S. De Liberato, M. Ueda, Phys. Rev. E 84, 051122 (2011)

    Article  ADS  Google Scholar 

  34. H. Li, J. Zou, W.-L. Yu et al., Phys. Rev. E 89, 052132 (2014)

    Article  ADS  Google Scholar 

  35. P. Filipowicz, J. Javanainen, P. Meystre, Phys. Rev. A 34, 3077 (1986)

    Article  ADS  Google Scholar 

  36. G.J. Milburn, Phys. Rev. A 36, 744 (1987)

    Article  ADS  Google Scholar 

  37. R. Alicki, K. Lendi, Quantum Dynamical Semigroups and Applications (Lecture Notes in Physics), vol. 717 (Springer, Berlin, 1987).

    MATH  Google Scholar 

  38. D..G. Klimovsky, W. Niedenzu, P. Brumer, G. Kurizki, Sci. Rep. 5, 14413 (2015)

    Article  ADS  Google Scholar 

  39. P. Doyeux, B. Leggio, R. Messina, M. Antezza, Phys. Rev. E 93, 022134 (2016)

    Article  ADS  Google Scholar 

  40. G. Watanabe, B.P. Venkatesh, P. Talkner, A. del Campo, Phys. Rev. Lett. 118, 050601 (2017)

    Article  ADS  Google Scholar 

  41. G. Watanabe, B.P. Venkatesh, P. Talkner, M.-J. Hwang, A. del Campo, Phys. Rev. Lett. 124, 210603 (2020)

    Article  ADS  Google Scholar 

  42. S. Teufel, Adiabatic Perturbation Theory in Quantum Dynamics (Springer, Berlin, 2003).

    Book  MATH  Google Scholar 

  43. A.E. Allahverdyan, Th.M. Nieuwenhuizen, Phys. Rev. E 71, 046107 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  44. T. Albash, S. Boixo, D.A. Lidar, P. Zanardi, New J. Phys. 14, 123016 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  45. F. Plastina, A. Alecce, T.J.G. Apollaro et al., Phys. Rev. Lett. 113, 260601 (2014)

    Article  ADS  Google Scholar 

  46. K. Korzekwa, M. Lostaglio, J. Oppenheim, D. Jennings, New J. Phys. 18, 023045 (2016)

    Article  ADS  Google Scholar 

  47. C.L. Latune, I. Sinayskiy, F. Petruccione, Phys. Rev. A 102, 042220 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  48. R. Kosloff, T. Feldmann, Phys. Rev. E 65, 055102(R) (2002)

    Article  ADS  Google Scholar 

  49. T. Feldmann, R. Kosloff, Phys. Rev. E 68, 016101 (2003)

    Article  ADS  Google Scholar 

  50. T. Feldmann, R. Kosloff, Phys. Rev. E 70, 046110 (2004)

    Article  ADS  Google Scholar 

  51. K. Brandner, U. Seifert, Phys. Rev. E 93, 062134 (2016)

    Article  ADS  Google Scholar 

  52. K. Brandner, M. Bauer, U. Seifert, Phys. Rev. Lett. 119, 170602 (2017)

    Article  ADS  Google Scholar 

  53. K. Brandner, K. Saito, Phys. Rev. Lett. 124, 040602 (2020)

    Article  ADS  Google Scholar 

  54. T. Feldmann, R. Kosloff, Phys. Rev. E 73, 025107(R) (2006)

    Article  ADS  Google Scholar 

  55. M.V. Berry, J. Phys. A 42, 365303 (2009)

    Article  MathSciNet  Google Scholar 

  56. X. Chen, A. Ruschhaupt, S. Schmidt et al., Phys. Rev. Lett. 104, 063002 (2010)

    Article  ADS  Google Scholar 

  57. S. Deng, A. Chenu, P. Diao et al., Sci. Adv. 4, eaar5909 (2018)

    Article  ADS  Google Scholar 

  58. A. del Campo, J. Goold, M. Paternostro, Sci. Rep. 4, 6208 (2014)

    Article  ADS  Google Scholar 

  59. J. Deng, Q.-H. Wang, Z. Liu, P. Hänggi, J. Gong, Phys. Rev. E 88, 062122 (2013)

    Article  ADS  Google Scholar 

  60. M. Beau, J. Jaramillo, A. del Campo, Entropy 18, 168 (2016)

    Article  ADS  Google Scholar 

  61. O. Abah, M. Paternostro, Phys. Rev. E 99, 022110 (2019)

    Article  ADS  Google Scholar 

  62. A. Hartmann, V. Mukherjee, W. Niedenzu, W. Lechner, Phys. Rev. R 2, 023145 (2020)

    Article  Google Scholar 

  63. R. Dann, R. Kosloff, New J. Phys. 22, 013055 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  64. S. Campbell, S. Deffner, Phys. Rev. Lett. 118, 100601 (2017)

    Article  ADS  Google Scholar 

  65. O. Abah, R. Puebla, A. Kiely, G. De Chiara, M. Paternostro, S. Campbell, New J. Phys. 21, 103048 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  66. O. Abah, E. Lutz, Phys. Rev. E 98, 032121 (2018)

    Article  ADS  Google Scholar 

  67. O. Abah, M. Paternostro, E. Lutz, Phys. Rev. Res. 2, 023120 (2020)

    Article  Google Scholar 

  68. R. Uzdin, Phys. Rev. Appl. 6, 024004 (2016)

    Article  ADS  Google Scholar 

  69. T. Feldmann, R. Kosloff, Phys. Rev. E 85, 051114 (2012)

    Article  ADS  Google Scholar 

  70. P.A. Camati, J.F.G. Santos, R.M. Serra, Phys. Rev. A 99, 062103 (2019)

    Article  ADS  Google Scholar 

  71. F. Altintas, A.Ü.C. Hardal, Ö.E. Müstecaplıoǧlu, Phys. Rev. A 91, 023816 (2015)

    Article  ADS  Google Scholar 

  72. R. Uzdin, A. Levy, R. Kosloff, Phys. Rev. X 5, 031044 (2015)

    Google Scholar 

  73. J. Klatzow, J.N. Becker, P.M. Ledingham et al., Phys. Rev. Lett. 122, 110601 (2019)

    Article  ADS  Google Scholar 

  74. M.O. Scully, K.R. Chapin, K.E. Dorfman, M.B. Kim, A. Svidzinsky, Proc. Natl. Acad. Sci. USA 108(37), 15097 (2011)

    Article  ADS  Google Scholar 

  75. A.A. Svidzinsky, K.E. Dorfman, M.O. Scully, Coherent Opt. Phenom. 1, 7 (2012)

    ADS  Google Scholar 

  76. M. Kloc, P. Cejnar, G. Schaller, Phys. Rev. E 100, 042126 (2019)

    Article  ADS  Google Scholar 

  77. C.L. Latune, I. Sinayskiy, F. Petruccione, New J. Phys. 22, 083049 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  78. M. Gross, S. Haroche, Phys. Rep. 93, 301–396 (1982)

    Article  ADS  Google Scholar 

  79. C.L. Latune, I. Sinayskiy, F. Petruccione, Phys. Rev. Res. 1, 033192 (2019)

    Article  Google Scholar 

  80. C.L. Latune, I. Sinayskiy, F. Petruccione, Phys. Rev. A 99, 052105 (2019)

    Article  ADS  Google Scholar 

  81. M.S. Kim, J. Lee, D. Ahn, P.L. Knight, Phys. Rev. A 65, 040101 (2002)

    Article  ADS  Google Scholar 

  82. M.B. Plenio, S.F. Huelga, Phys. Rev. Lett. 88, 197901 (2002)

    Article  ADS  Google Scholar 

  83. F. Benatti, R. Floreanini, M. Piani, Phys. Rev. Lett. 91, 070402 (2003)

    Article  ADS  Google Scholar 

  84. W. Niedenzu, G. Kurizki, New J. Phys. 20, 113038 (2018)

    Article  ADS  Google Scholar 

  85. V. Holubec, T. Novotný, J. Low Temp. Phys. 192, 147 (2018)

    Article  ADS  Google Scholar 

  86. V. Holubec, T. Novotný, J. Chem. Phys. 151, 044108 (2019)

    Article  ADS  Google Scholar 

  87. W. Niedenzu, D. Gelbwaser-Klimovsky, G. Kurizki, Phys. Rev. E 92, 042123 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  88. D. Gelbwaser-Klimovsky, W. Niedenzu, G. Kurizki, Adv. At. Mol. Opt. Phys. 64, 329 (2015)

    Article  ADS  Google Scholar 

  89. G. Manzano, G.-L. Giorgi, R. Fazio, R. Zambrini, New J. Phys. 21, 123026 (2019)

    Article  Google Scholar 

  90. M. Kilgour, D. Segal, Phys. Rev. E 98, 012117 (2018)

    Article  ADS  Google Scholar 

  91. S. Rahav, U. Harbola, S. Mukamel, Phys. Rev. A 86, 043843 (2012)

    Article  ADS  Google Scholar 

  92. H.P. Goswami, U. Harbola, Phys. Rev. A 88, 013842 (2013)

    Article  ADS  Google Scholar 

  93. K.E. Dorfman, D. Xu, J. Cao, Phys. Rev. E 97, 042120 (2018)

    Article  ADS  Google Scholar 

  94. J.-Y. Du, F.-L. Zhang, New J. Phys. 20, 063005 (2018)

    Article  ADS  Google Scholar 

  95. M.T. Mitchison, M.P. Woods, J. Prior, M. Huber, New J. Phys. 17, 115013 (2015)

    Article  ADS  Google Scholar 

  96. S. Nimmrichter, J. Dai, A. Roulet, V. Scarani, Quantum 1, 37 (2017)

    Article  Google Scholar 

  97. D. Newman, F. Mintert, A. Nazir, Phys. Rev. E 101, 052129 (2020)

    Article  ADS  Google Scholar 

  98. D. Newman, F. Mintert, A. Nazir, Phys. Rev. E 95, 032139 (2017)

    Article  ADS  Google Scholar 

  99. J.O. González, J.P. Palao, D. Alonso, L.A. Correa, Phys. Rev. E 99, 062102 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is based on research supported by the South African Research Chair Initiative, Grant No. UID 64812 of the Department of Science and Technology of the Republic of South Africa and National Research Foundation of the Republic of South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camille L. Latune.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latune, C.L., Sinayskiy, I. & Petruccione, F. Roles of quantum coherences in thermal machines. Eur. Phys. J. Spec. Top. 230, 841–850 (2021). https://doi.org/10.1140/epjs/s11734-021-00085-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00085-1

Navigation