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Abstract The fluctuations experienced by magnetic microswimmers in a magnetic field often have non-
thermal contributions, in particular in the case of biological swimmers such as magnetotactic bacteria. Here
we study a model for an active self-propelled particle subject to correlated internal noise as a model for the
active, non-thermal noise contribution and determine the effect of the correlation time on the diffusion of
the swimmer and on its orientation in a magnetic field. A description in terms of an effective temperature
is possible, but has limitations.

1 Introduction

A key concept of statistical physics is that the fluc-
tuations of observables provide information about the
properties of the underlying physical systems and pro-
cesses. Fluctuations in thermodynamic equilibrium are
related to response quantities and their time correla-
tions are linked to near-equilibrium dynamics via the
fluctuation-dissipation theorem [1]. In many settings, in
particular in living systems, far-from-equilibrium situ-
ations are common, where processes are coupled to the
flow of energy, matter and/or information. In these situ-
ations, violations of the fluctuation-dissipation theorem
have been used to demonstrate the presence of noise of
non-thermal origin and to separate thermal and non-
thermal noise [2,3]. Another indicator of the presence
of non-thermal noise is the need for an effective tem-
perature rather than the actual temperature for the
description of fluctuations. One example where effec-
tive temperatures have been used is given by the orien-
tation fluctuations of natural magnetic microswimmers,
magnetotactic bacteria [4–7].

Microswimmers, micron-scale particles that self-pro-
pel in fluids, have been studied extensively over the
last years, from a view point of basic science as well
as with respect to environmental and biomedical appli-
cations [8–10]. Magnetic microswimmers (natural, syn-
thetic or biohybrid) are particularly promising, because
their motion can be controlled remotely with a mag-
netic field [10]. Magnetotactic bacteria, which naturally
form an intracellular chain of magnetic nanoparticles,
the magnetosome chain, to align with magnetic fields
and swim along the field lines, have been studied in
particular [10–12]. Since their interaction energy with
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typical magnetic fields (the Earth’s magnetic field in
their natural environment) is of the order of 10 kBT ,
orientation fluctuations are common. They may also be
important functionally, as they allow the bacteria to
transiently deviate from the direction defined by the
field, e.g. to circumvent obstacles in their path. Sev-
eral studies of orientation fluctuations have shown that
the magnitude of these fluctuations exceeds what is
expected based on thermal fluctuations and have used
effective temperatures to describe them [4–7]. Usually,
the excess noise is ascribed to internal processes of
the living organism, an interpretation supported by an
early study that showed smaller orientation fluctua-
tions for dead bacteria [5]. Here we consider a model
for the combination of thermal and internal “active”
noise, where the latter is described as colored noise and
explore its consequences for the orientation fluctuations
as well as the effective (active) diffusive motion of the
swimmer.

2 Model

We consider a single active Brownian particle [9],
which is described by its position r and orientation
e = (cos ϕ, sin ϕ), both for simplicity taken in two-
dimensional space. The orientation defines the direction
of self-propulsion with speed v and is also the direction
of the magnetic moment m = me.

The equations of motion for an active Brownian par-
ticle with the position r and the orientation angle ϕ in
a homogeneous external magnetic field with strength B
are
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Fig. 1 a Mean square angular displacement (MSAD) and
(b) mean square displacement (MSD) of the swimmers
as functions of time for different correlation times τ (col-

ored lines) and fixed Dc = 0.5 rad2/s, v = 0.87 μm/s,
Dr = Dt = 0. Statistical analysis was performed over 1000
realizations

ṙ = ve +
√

2Dt ξ (1)

ϕ̇ = − 1
γr

mB sinϕ +
√

2Dr ξ3 +

√
Dc

τ
ηc. (2)

Here ξ = (ξ1, ξ2) and ξ3 are thermal white noise with
〈ξi(t)〉 = 0 and 〈ξi(t)ξj(t′)〉 = δi,jδ(t − t′), where the
indices i and j run over the components of the noise.
Its noise strength is given by the translational and rota-
tional diffusion coefficients Dt and Dr. ηc is the colored
noise describing noise from internal non-thermal pro-
cesses, characterized by a correlation time τ , i.e. with

〈ηc (t) ηc (t′)〉 ∝ e−|t−t′|/τ . (3)

The coefficient of the colored noise in Eq. 2 was chosen
to obtain 〈ϕ2 (t)〉 = 2Dct in the long time limit for the
case Dr = 0. Colored noise ηc can be generated from
white noise ξ4 via the additional equation of motion

η̇c = −1
τ

ηc +

√
2
τ

ξ4. (4)

The coefficients were chosen so that the colored noise
ηc is Gaussian with 〈ηc (t)〉 = 0 and 〈η2

c (t)〉 = 1 in the
long time limit.

For the numerical solution, the equations of motion
were integrated using the Euler-Maruyama method [13]
with a time step of 10−5 s. The statistical analysis was
performed over 500 or 1000 realizations.

3 Results and discussion

We first consider the motion of the active particle in the
absence of a magnetic field (B = 0) and without ther-
mal noise (Dr = Dt = 0). In that case, the Langevin
equation for the angle ϕ can be solved analytically (in
fact this equation is mathematically equivalent to the
standard Langevin equation that is obtained by adding

noise to a Newtonian equation of motion with damping
[14]).

Figure 1a shows the mean square angular displace-
ment (MSAD) for different realizations of the same
value of Dc with different values of τ (colored lines).
From the analytical solution, the MSAD is found to be
〈ϕ2〉 ≈ Dct

2/τ for short times t and 〈ϕ2〉 ≈ 2Dct for
long times. The long time behavior is independent of
the correlation time and sets in after time 2τ .

Moments of the position of the active particle are
calculated by numerical integration. Figure 1b shows
the mean square displacement (MSD). The position ini-
tially exhibits ballistic motion, 〈x2〉 = 〈y2〉 ≈ v2t2, and
then crosses over to diffusive motion with 〈x2〉 = 〈y2〉 ≈
2Defft after a persistence time 2τp. The effective (trans-
lational) diffusion coefficient is given by Deff = D0 =
v2/Dc for short correlation times τ , i.e. in the limit
of white noise. In that case, τp ≈ 1/Dc. The persis-
tence time increases with increasing correlation time τ
as shown in Fig. 1b. Figure 2 shows the dependence of
the effective translational diffusion coefficient Deff on
the correlation time τ for different values of Dc (col-
ored points). Just like the persistence time, the effec-
tive diffusion coefficient increases with increasing corre-
lation time. The slope in Fig. 2 indicates a dependence
Deff −D0 ∝ τ1/2 (solid lines). The only relevant param-
eter with the dimension of length is the self-propulsion
velocity. Therefore, the diffusion coefficient must be
given by Deff = v2τp, where the required timescale can
be identified with the persistence time. The latter can
be decomposed as the white-noise persistence time and
a τ -dependent contribution as τp = 1/Dc + Δτp(τ).
Since we numerically observe a τ1/2-dependence and
1/Dc is the only other time scale in the model, we have
Δτp = a(τ/Dc)1/2 with a numerical constant a. We
note that the time scale in the correction term due to
the noise correlations is given by the geometric mean
of the two relevant time scales related to a change in
orientation, the time scale of rotational diffusion 1/Dc

and the correlation time of the noise τ that generates
the rotational diffusion. The geometric mean is known
to provide a single characteristic time scale in decay
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Fig. 2 Effect of the correlation time τ of the colored noise
on the effective translational diffusion coefficient Deff for dif-
ferent values of Dc. For each Dc the numerical constant a in
Eq. 2 was determined via non-linear least squares regression
(lines)

processes [15]. Furthermore, the factor (τDc)
1/2 is also

known as the expected angular change during the cor-
relation time τ [16]. Overall, the numerical observa-
tion and dimensional considerations together suggest
the relation

Deff � D0 + av2 (τ/Dc)
1/2 =

v2

Dc
×

[
1 + a (τDc)

1/2
]

(5)

for the effective diffusion coefficient.
Next we consider the orientation of the swimmer

in an external homogeneous magnetic field. We vary
the field strength B in the numerical integration and
plot 〈cos ϕ〉, the average of the projection of the mag-
netic moment on the direction of the field in Fig. 3a.
This quantity usually follows a Langevin function and
depends on mB/kBT [17]. In our case the noise is
not thermal. Yet, the qualitative behavior still fol-
lows the Langevin function, however with an effec-
tive temperature Teff . This effective temperature can
be determined from the field strength B∗ for which
〈cos ϕ〉 = 0.5, which we obtain via linear interpolation
from our numerical data. The Langevin function takes
the value 0.5 for mB∗/ (kBTeff) � 1.79, from which we
determine the effective temperature. As expected the
effective temperature increases as a function of the noise
strength Dc, but is seen to decrease as a function of the
correlation time τ , as shown in Fig. 3b. A decrease as
a function of τ agrees with the results obtained from
a small-τ expansion for the diffusion coefficient in the
corresponding Fokker–Planck equation [16]. However,
one has to be careful here: The effective temperature
that is obtained from the Langevin function (and thus
from the fluctuations around an equilibrium in the field)
does not describe the free diffusion of the angular vari-
able as measured by the mean square angular displace-
ment in the absence of a field. In fact, one can define
an alternative effective temperature from the latter as
kBT

(r)
eff = Dcγr. In contrast to the temperature obtained

from the Langevin curve, this temperature is indepen-
dent of the correlation time, as illustrated in Fig. 3b.
Moreover, its value does not agree with Teff even in
the limit τ −→ 0 as the Stokes-Einstein relation is
in general not fulfilled. Likewise, though probably of
less use, one could define yet another temperature from
the effective translational diffusion, kBT

(t)
eff = Deffγt,

which depends on the self-propulsion velocity and is
seen to increase as a function of τ . We note that the
three effective temperatures are controlled by different
parameters: Teff depends on Dc and on the correlation
time of the colored noise, while T

(r)
eff is controlled by Dc

alone. Neither of the two depends on the self-propulsion
velocity. In contrast, T

(t)
eff depends on the self-propulsion

velocity as well as the colored noise, which determines
the persistence time of the active motion. These differ-
ent dependencies indicate that the concept of an effec-
tive temperature is only of limited use.

Finally, we briefly consider the case with both ther-
mal noise and correlated non-thermal noise and plot
again a Langevin curve for the orientation in a magnetic
field, as this is the quantity of experimental interest, as
well as the corresponding effective temperature. The
results are shown in Fig. 4. Not surprisingly, stronger
fields are needed for the same degree of alignment in the
case of thermal and correlated noise compared to ther-
mal noise only (black line). The maximal shift of the
Langevin curve is obtained in the limit of white noise.
This observation provides a lower limit on the required
strength of the non-thermal noise as quantified by Dc.
Experimentally observed effective temperatures exceed
the actual temperature by a factor in the range 1–10
[4–6]. To obtain such an increase in effective tempera-
ture, sufficiently large Dc are required, with larger Dc

required for longer correlation times. With the parame-
ters used in Fig. 4, an effective temperature comparable
to experimentally observed ones is found for realistically
small (sub-second) correlation times. However, to deter-
mine both strength and correlation time of the non-
thermal noise the Langevin curve that is determined
in experiments alone is not sufficient, rather a direct
measurement of the free rotational diffusion would be
needed in addition.

In conclusion, we have studied the effect of tempo-
rally correlated noise on the orientation of a magnetic
swimmer. Our investigation was motivated by obser-
vations that the noise in the orientation of biological
magnetic swimmers, magnetotactic bacteria, typically
exceeds the expected thermal noise. We found that the
correlation time of the noise affects the effective trans-
lational diffusion of the swimmer as well as the preci-
sion of its orientation with respect to a magnetic field.
The latter is often used to define an effective temper-
ature; however, our results show that this temperature
in general does not reflect the effective rotational dif-
fusion coefficient. We also note that the internal non-
thermal noise considered here is not the only possible
contribution to the observed effective temperatures. An
additional contribution that results in similar Langevin
curves may be due to active directional changes such as
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Fig. 3 a Langevin curves and (b) effective temperatures
for different correlation times with Dc = 0.5 rad2/s. The
magnetic strength was set to m = 4.2 × 10−16 Am2, corre-
sponding to the average magnetic strength of the magneto-
tactic bacterium AMB-1 [6]. Trajectories of 1000 swimmers

were used for statistical analysis. In addition to the effec-
tive temperature obtained from the Langevin curve (Teff),
we also show effective temperatures derived from rotational

and translational diffusion (T
(r)
eff and T

(t)
eff , respectively) in

(b)

Fig. 4 a Langevin curves for the case of combined ther-
mal and correlated non-thermal noise (colored lines) for
Dc = 5 rad2/s in comparison to thermal noise only at
T = 300 K (black line). The rotational diffusion con-
stant was set to Dr = 1 rad2/s and the magnetic strength
to m = 4.2 × 10−16 Am2. Trajectories of 500 swimmers
were analyzed. b Corresponding effective temperatures as
obtained from the Langevin curve (crosses) and from rota-

tional diffusion (circles) for the case with both noise terms
(blue) and with the correlated noise only (green). The black

line indicates the actual temperature of 300 K. For T
(r)
eff the

simulation data for the case with both noise terms (blue
circles) agree with the exact value for the case with only
correlated noise (green horizontal line) plus 300K (blue hor-
izontal line)

tumbles, flicks and reversals, which should be detected
as discrete events in the trajectories [18].
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