Skip to main content
Log in

Fluctuation of information content and the optimum capacity for bosonic transport

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We discuss the optimum communication capacity of bosonic information carriers propagating through a tunnel junction. Based on the multi-contour Keldysh Green function, we evaluate the information generating function, or the Rényi entanglement entropy, of the reduced density matrix subjected to the constraint of local heat quantity in the steady state. The Rényi entanglement entropy of order zero is the partition function, which exponentially depends on the optimum capacity. For the perfect transmission, the self-information and the local heat quantity, i.e., the energy of signals, are perfectly linearly correlated. The water-filling theorem is recovered in the wave-like regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. C.E. Shannon, Bell Syst. Tech. J. 27(379–423), 623–656 (1948)

    Article  Google Scholar 

  2. T.M. Cover, J.A. Thomas, Elements of Information Theory, 2nd edn. (Wiley-Interscience, New York, 2006)

    MATH  Google Scholar 

  3. R. Landauer, Science 272, 1914 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  4. S. Lloyd, Nature 406, 1047 (2000)

    Article  ADS  Google Scholar 

  5. D.S. Lebedev, L.B. Levitin, Dokl. Akad. Nauk SSSR 149, 1299 (1963) [Sov. Phys. Dokl. 8, 377 (1963)]

  6. D.S. Lebedev, L.B. Levitin, Inf. Control 9, 1 (1966)

    Article  Google Scholar 

  7. J.B. Pendry, J. Phys. A Math. Gen. 16, 2161 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  8. C.M. Caves, P.D. Drummond, Rev. Mod. Phys. 66, 481 (1994)

    Article  ADS  Google Scholar 

  9. M.P. Blencowe, V. Vitelli, Phys. Rev. A 62, 052104 (2000)

    Article  ADS  Google Scholar 

  10. J.D. Bekenstein, A.E. Mayo, Gen. Relativ. Gravit. 33, 2095 (2001)

    Article  ADS  Google Scholar 

  11. Y. Utsumi, Phys. Rev. B 96, 085304 (2019)

    Article  ADS  Google Scholar 

  12. S.W. Golomb, IEEE Trans. Inf. Theory IT–12, 75 (1966)

    Article  Google Scholar 

  13. S. Guiasu, C. Reischer, Inf. Sci. 35, 235 (1985)

    Article  Google Scholar 

  14. U. Sivan, Y. Imry, Phys. Rev. B 33, 551 (1986)

    Article  ADS  Google Scholar 

  15. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, New York, 2000)

    MATH  Google Scholar 

  16. G.E. Andrews, The Theory of Partitions (Encyclopedia of Mathematics and its Applications) (Cambridge University Press, Cambridge, 1984)

    Google Scholar 

  17. M.P. Blencowe, N.C. Koshnick, J. Math. Phys. 42, 5713 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  18. H. Touchette, Phys. Rep. 478, 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  19. R.M. Fano, Transmission of Information: A Statistical Theory of Communications (The MIT Press, Cambridge, 1961)

    Book  Google Scholar 

  20. A. Rényi, Proceedings of the Fourth Berkeley Symposium on Mathematics, Statistics, and Probability (University of California Press, Berkeley, 1960), p. 547

    Google Scholar 

  21. M. Campisi, P. Hänggi, M. Talkner, Rev. Mod. Phys. 83, 771 (2011)

    Article  ADS  Google Scholar 

  22. Yu.V. Nazarov, Phys. Rev. B 84, 205437 (2011)

  23. M.H. Ansari, Yu.V. Nazarov, Phys. Rev. B 91, 174303 (2015)

  24. M.H. Ansari, Yu.V. Nazarov, Phys. Rev. B 91, 174307 (2015)

  25. M.H. Ansari, Yu.V. Nazarov, J. Exp. Theor. Phys. 122, 389 (2016)

  26. Y. Utsumi, Phys. Rev. B 92, 165312 (2015)

    Article  ADS  Google Scholar 

  27. M.H. Ansari, Phys. Rev. B 95, 174302 (2017)

    Article  ADS  Google Scholar 

  28. Y. Utsumi, Phys. Rev. B 96, 085304 (2017)

    Article  ADS  Google Scholar 

  29. Y. Utsumi, Eur. Phys. J. Spec. Top. (2019). https://doi.org/10.1140/epjst/e2018-800043-4

    Article  Google Scholar 

  30. A. Petrescu, H.F. Song, S. Rachel, Z. Ristivojevic, C. Flindt, N. Laflorencie, I. Klich, N. Regnault, K. Le Hur, J. Stat. Mech.2014, P10005 (2014). https://doi.org/10.1088/1742-5468/2014/10/P10005

  31. P. Calabrese, A. Lefevre, Phys. Rev. A 78, 032329 (2008)

    Article  ADS  Google Scholar 

  32. Y. Utsumi, D.S. Golubev, Gerd Schön, Phys. Rev. Lett. 96, 086803 (2006)

    Article  ADS  Google Scholar 

  33. K. Saito, Y. Utsumi, Phys. Rev. B 78, 115429 (2008)

    Article  ADS  Google Scholar 

  34. Y. Utsumi, K. Saito, Phys. Rev. B 79, 235311 (2009)

    Article  ADS  Google Scholar 

  35. M. Esposito, U. Harbola, S. Mukamel, Rev. Mod. Phys. 81, 1665 (2009)

    Article  ADS  Google Scholar 

  36. T.-H. Park, M. Galperin, Phys. Rev. B 84, 205450 (2011)

    Article  ADS  Google Scholar 

  37. A. Kamenev, Field Theory of Nonequilibrium Systems (Cambridge University Press, Cambridge, 2011)

    Book  Google Scholar 

  38. Y. Utsumi, O. Entin-Wohlman, A. Ueda, A. Aharony, Phys. Rev. B 87, 115407 (2013)

    Article  ADS  Google Scholar 

  39. H. Casini, M. Huerta, J. Phys. A 42, 504007 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI 17K05575, 18KK0385, and 20H01827. Y. U. performed calculations and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Utsumi.

Appendix A: Multi-contour Keldysh technique

Appendix A: Multi-contour Keldysh technique

A component of \(2 M \times 2 M\) multi-contour Keldysh Green function matrix \(\mathbf{g}_{A}\) connecting \(C_{m^\prime ,s^\prime }\) and \(C_{m,s}\) is [22,23,24,25,26,27,28,29],

$$\begin{aligned} g_{A}^{ms,m's'}(t,t')= & {} g_{A}(t_{ms},t'_{m's'}) \nonumber \\= & {} -i \sum _k \left\langle {\hat{T}}_C {\hat{a}}_{Ak}(t_{ms})_I {\hat{a}}_{Ak}^\dagger (t_{m's'}')_I \right\rangle _{M,\chi } . \nonumber \\ \end{aligned}$$
(31)

The \(2 M \times 2M\) matrix \(\mathbf{g}_{A}\) is a block circulant as,

$$\begin{aligned}&\mathbf{g}_{A}(\omega ) = \left[ \begin{array}{cccc} \mathbf{A}_0(\omega ) &{} \mathbf{A}_{M-1}(\omega ) &{} \cdots &{} \mathbf{A}_{1}(\omega ) \\ \mathbf{A}_1(\omega ) &{} \mathbf{A}_{0}(\omega ) &{} \cdots &{} \mathbf{A}_{2}(\omega ) \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ \mathbf{A}_{M-1}(\omega ) &{} \mathbf{A}_{M-2}(\omega ) &{} \cdots &{} \mathbf{A}_{0}(\omega ) \end{array} \right] \nonumber ,\\ \,&\mathbf{A}_0(\omega ) = \epsilon _A(\omega ) {\tau }_z -i \pi \rho _A(\omega ) \nonumber \\&\quad \times \left[ \begin{array}{cc} n_{A, 0 }(\omega ) + n_{A, M-i \chi /\beta _A}(\omega ) &{} 2 n_{A, 1}(\omega ) \\ 2 n_{A, M(1-i \chi /(\beta _A M))-1}(\omega ) &{} n_{A, 0 }(\omega ) + n_{A, M-i \chi /\beta _A}(\omega ) \end{array} \right] , \nonumber \\&\mathbf{A}_m(\omega ) = -2 i \pi \rho _A(\omega ) \nonumber \\&\quad \times \left[ \begin{array}{cc} n_{A, m(1-i \chi /(\beta _A M))}(\omega ) &{} n_{A, m(1-i \chi /(\beta _A M))+1}(\omega ) \\ n_{A, m(1-i \chi /(\beta _A M))-1}(\omega ) &{} n_{A, m(1-i \chi /(\beta _A M))}(\omega ) \end{array} \right] \nonumber \\&\quad \times (m \ne 0) ,\nonumber \\ \end{aligned}$$
(32)

where \(n_{A , m}(\omega ) = \mathrm{e}^{-\beta _{A} \omega m} /\left( 1- \mathrm{e}^{ -\beta _A \omega (M-i \chi )} \right) \). The block circulant matrix is block-diagonalized by the discrete Fourier transform, \(\sum _{m=0}^{M-1} \mathbf{A}_{m} \mathrm{e}^{i 2 \pi \ell m/M } = \mathbf{g}_{A}^{\lambda _\ell }\), where \(\lambda _\ell = (2 \pi \ell + \omega \chi )/M\) and

$$\begin{aligned}&\mathbf{g}_{A}^{\lambda }(\omega ) = \epsilon _A(\omega ) {\tau }_z - 2 i \pi \rho _A(\omega ) \nonumber \\&\quad \times \left[ \begin{array}{cc} n_{A}^{\lambda ,-}(\omega ) + n_{A}^{\lambda ,+}(\omega ) &{} n_{A}^{\lambda ,+}(\omega ) \mathrm{e}^{-i \lambda } \\ n_{A}^{\lambda ,-}(\omega ) \mathrm{e}^{i \lambda } &{} n_{A}^{\lambda ,-}(\epsilon _A) + n_{A}^{\lambda ,+}(\omega ) \end{array} \right] . \end{aligned}$$
(33)

A multi-contour Keldysh Green function of subsystem B is nonzero when \({\hat{a}}_{B,m}\) and \({\hat{a}}_{B,m'}^\dagger \) are on the same (standard) Keldysh contour \(m=m'\). It is given as,

$$\begin{aligned}&\mathbf{g}_{B}(\omega ) = \mathbf{1}_{M} \otimes \nonumber \\&\quad \times \left( - 2 \pi i \rho _B(\omega ) \left[ \begin{array}{cc} n_B^-(\omega ) + n_B^+ (\omega ) &{} n_B^+ (\omega ) \\ n_B^- (\omega ) &{} n_B^-(\omega ) + n_B^+ (\omega ) \end{array} \right] \right) ,\nonumber \\ \end{aligned}$$
(34)

where \(\mathbf{1}_M\) is the \(M \times M\) identity matrix.

The Keldysh partition function (21) can be calculated by exploiting standard Keldysh techniques, see e.g. [32,33,34,35,36,37,38]. In the limit of long measurement time, the leading contribution is proportional to \(\tau \) as,

$$\begin{aligned}&\ln \frac{S_{M}( \chi )}{s_{M}( \chi )} \approx - \sum _{\ell =0}^{M-1} \tau \int \frac{\mathrm{d} \omega }{2 \pi } \ln \mathrm{det}\nonumber \\&\quad \times \left[ \begin{array}{cc} \mathbf{1}_{2} &{} -J \mathbf{g}_A^{\lambda _\ell }(\omega ) {\tau }_z \\ -J \mathbf{g}_B(\omega ) {\tau }_z &{} \mathbf{1}_{2} \end{array} \right] = \sum _{\ell =0}^{M-1} \ln {{\mathcal {Z}}}_\tau (\mathrm{e}^{i \lambda _\ell }) , \end{aligned}$$

where \(\ln {{\mathcal {Z}}}_\tau \) is the current cummulant generating function of full counting statistics in the single-time measurement protocol,

$$\begin{aligned}&\ln {{\mathcal {Z}}}_\tau (\mathrm{e}^{i \lambda }) = - \tau \int \frac{\mathrm{d} \omega }{2 \pi } \ln \left( \frac{{\tilde{n}}_A^-(\omega ) - {\tilde{n}}_A^+(\omega ) \mathrm{e}^{i \lambda }}{{n}_A^-(\omega ) - {n}_A^+(\omega ) \mathrm{e}^{i \lambda }} \right) . \end{aligned}$$
(35)

We rewrite the summation over \(\ell \) as the contour integral (Fig. 3a) as [39],

$$\begin{aligned} \ln \frac{S_{M}( \chi )}{s_{M}( \chi )} = \int _{C_{\mathrm{even}}} \frac{\mathrm{d}u}{2 \pi } \sum _{\ell =0}^{M-1} \frac{\ln {{\mathcal {Z}}}_\tau (u \mathrm{e}^{i \omega \chi /M})}{u-\mathrm{e}^{i 2 \pi \ell /M}} . \end{aligned}$$
(36)

If \(i \chi <0\) and \(\beta _B<\beta _A\), branch points of the integrand \(\ln {{\mathcal {Z}}}_\tau \), \(u_+(\omega )=n_A^-(\omega )/(n_A^+(\omega )\mathrm{e}^{i \omega \chi /M})\) and \(u_-(\omega )={\tilde{n}}_A^-(\omega )/({\tilde{n}}_A^+(\omega )\mathrm{e}^{i \omega \chi /M})\) are on the real axis and satisfy \(1<u_-(\omega )<u_+(\omega )\). By changing the contour as Fig. 3b and by utilizing \(\sum _{\ell =0}^{M-1} (u-\mathrm{e}^{i 2 \pi \ell /M})^{-1} = \partial _u \ln (u^M-1)\), we obtain Eq. (22).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Utsumi, Y. Fluctuation of information content and the optimum capacity for bosonic transport. Eur. Phys. J. Spec. Top. 230, 1059–1066 (2021). https://doi.org/10.1140/epjs/s11734-021-00074-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00074-4

Navigation