Skip to main content
Log in

Edge-state critical behavior of the integer quantum Hall transition

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The integer quantum Hall effect features a paradigmatic quantum phase transition. Despite decades of work, experimental, numerical, and analytical studies have yet to agree on a unified understanding of the critical behavior. Based on a numerical Green function approach, we consider the quantum Hall transition in a microscopic model of non-interacting disordered electrons on a simple square lattice. In a strip geometry, topologically induced edge states extend along the system rim and undergo localization–delocalization transitions as function of energy. We investigate the boundary critical behavior in the lowest Landau band and compare it with a recent tight-binding approach to the bulk critical behavior [Phys. Rev. B 99, 121301(R) (2019)] as well as other recent studies of the quantum Hall transition with both open and periodic boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. We consider fits as reasonable when the mean squared deviation approximates the data’s standard deviation. Unless noted otherwise, the given uncertainties of the critical estimates represent statistical standard deviations with respect to individual fits.

References

  1. W. Li, G.A. Csáthy, D.C. Tsui, L.N. Pfeiffer et al., Phys. Rev. Lett. 94 (2005)

  2. K. Slevin, T. Ohtsuki, Phys. Rev. B 80 (2009)

  3. I.A. Gruzberg, A. Klümper, W. Nuding, A. Sedrakyan, Phys. Rev. B 95 (2017)

  4. Q. Zhu, P. Wu, R.N. Bhatt, X. Wan, Phys. Rev. B 99 (2019)

  5. M. Puschmann, P. Cain, M. Schreiber, T. Vojta, Phys. Rev. B (R) 99 (2019)

  6. J.T. Chalker, P.D. Coddington, J. Phys.: Condens. Matter 21, 2665–2679 (1988)

    Google Scholar 

  7. B. Kramer, T. Ohtsuki, S. Kettemann, Phys. Rep. 417, 211–342 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  8. M. Amado, A.V. Malyshev, A. Sedrakyan et al., Phys. Rev. Lett. 107 (2011)

  9. K. Slevin, T. Ohtsuki, Int. J. Mod. Phys. Conf. Ser. 11, 60–69 (2012)

    Article  Google Scholar 

  10. H. Obuse, I.A. Gruzberg, F. Evers, Phys. Rev. Lett. 109 (2012)

  11. W. Nuding, A. Klümper, A. Sedrakyan, Phys. Rev. B 91 (2015)

  12. I.C. Fulga, F. Hassler, A.R. Akhmerov et al., Phys. Rev. B 84 (2011)

  13. J.P. Dahlhaus, J.M. Edge, J. Tworzydło et al., Phys. Rev. B 84 (2011)

  14. R.E. Peierls, Z. Phys. 80, 763–791 (1933)

    Article  ADS  Google Scholar 

  15. J.M. Luttinger, Phys. Rev. 84, 814–817 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  16. D.R. Hofstadter, Phys. Rev. B 14, 2239–2249 (1976)

    Article  ADS  Google Scholar 

  17. R. Rammal, J. Phys. France 46, 1345–1354 (1985)

    Article  MathSciNet  Google Scholar 

  18. A. MacKinnon, J. Phys.: Condens. Matter 13, L1031–L1034 (1980)

    Google Scholar 

  19. A. MacKinnon, B. Kramer, Z. Phys. B 53, 1–13 (1983)

    Article  ADS  Google Scholar 

  20. A. MacKinnon, Z. Phys. B 59, 385–390 (1985)

    Article  ADS  Google Scholar 

  21. L. Schweitzer, B. Kramer, A. MacKinnon, J. Phys. C Solid State Phys. 17, 4111 (1984)

    Article  ADS  Google Scholar 

  22. B. Kramer, L. Schweitzer, A. MacKinnon, Z. Phys. B 56, 297–300 (1984)

    Article  ADS  Google Scholar 

  23. K. Slevin, T. Ohtsuki, Phys. Rev. Lett. 82, 382–385 (1999)

    Article  ADS  Google Scholar 

  24. H. Obuse, A.R. Subramaniam, A. Furusaki et al., Phys. Rev. B 82 (2010)

Download references

Acknowledgements

This work was supported by the NSF under Grant Nos. DMR-1506152 and DMR-1828489.

Author information

Authors and Affiliations

Authors

Contributions

M. P. and T. V. conceived the presented idea. M. P. performed the simulations, analyzed the data, and took the lead in writing the manuscript. All authors discussed the results and provided critical feedback to the analysis and the manuscript.

Corresponding author

Correspondence to Thomas Vojta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puschmann, M., Cain, P., Schreiber, M. et al. Edge-state critical behavior of the integer quantum Hall transition. Eur. Phys. J. Spec. Top. 230, 1003–1007 (2021). https://doi.org/10.1140/epjs/s11734-021-00064-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00064-6

Navigation