Skip to main content
Log in

Significances of Darcy–Forchheimer porous medium in third-grade nanofluid flow with entropy features

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This work addresses the impact of magnetohydrodynamic Darcy–Forchheimer flow of third-grade nanofluid towards a linearly elastic sheet. Examination has been undertaken in the attendance of velocity slip, Newtonian heating, and non-Fourier heat and mass flux which has not been studied previously. Based on Darcy–Forchheimer model was implemented to illustrate the flow during the porous medium. The entropy minimization of the total system is calculated. Suitable variables are implemented to change the obtained mathematical models into an ODE models. Series solutions are derived by adopting homotopic simulation. After that, the complete investigation of the impact of flow regime on distinct thermofluidic parameters are conferred in the way of graphs and tables. To find the precision of the present solution scheme, a comparison table in limiting conditions is done between the previously available literature and the present results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

The raw data supporting the finishes of this article will be made accessible by the authors, without unjustifiable reservation.

Abbreviations

a :

Stretching rate \((s^{-1})\)

Be :

Bejan number

Br :

Brinkman number

\(B_{0}\) :

Constant magnetic field \((kgs^{-2}A^{-1})\)

C:

Concentration \((kgm^{-3})\)

\(C_{b}\) :

Drag coefficient

\(C_{p}\) :

Specific heat \((J kg^{-1}K^{-1})\)

\(C_{\infty }\) :

Ambient concentration \((kg m^{-3})\)

\(C_{w}\) :

Fluid wall concentration \((kg m^{-3})\)

\(Cf_{x}\) :

Skin friction coefficient

\(D_{B}\) :

Brownian diffusion coefficient \((m^{2}s^{-1})\)

\(D_{T}\) :

Thermophoretic diffusion coefficient \((m^{2}s^{-1})\)

EG :

Entropy generation parameter

\(f(\eta )\) :

Velocity similarity function

\(f_{w}\) :

Suction/injection parameter

Hg:

Heat generation parameter

\(h_{f}\) :

Surface heat transfer coefficient \((W m^{-2}K^{-1})\)

\(\alpha _{1}, \alpha _{2}, \beta \) :

Fluid parameters

k :

Thermal conductivity \((W m^{-1}K^{-1})\)

K:

Porous parameter

L:

Auxiliary linear operator

Le:

Lewis number

M:

Magnetic parameter

N:

Non-linear operator

Nb:

Brownian motion parameter

Nt:

Thermophoresis parameter

Nw:

Dimensionless Newtonian heating parameter

\(Nu_{x}\) :

Nusselt number

Pr:

Prandtl number

\(Q_{0}\) :

Dimensional heat generation/absorption coefficient

q :

Heat flux \((W m^{-2})\)

Rd:

Radiation parameter

Re:

Reynolds number

\(Sh_{x}\) :

Sherwood number

\(S^{'''}_{gen}\) :

Local volumetric entropy generation rate \((W m^{-3}K^{-1})\)

\(S^{'''}_{0}\) :

Characteristic entropy generation rate \((W m^{-3}K^{-1})\)

T :

Temperature (K)

\(T_{\infty }\) :

Ambient temperature (K)

\(T_{f}\) :

Convective surface temperature (K)

\(u_{w}\) :

Velocity of the sheet \((m s^{-1})\)

uv :

Velocity components in (xy) directions \((m s^{-1})\)

\(v_{w}>0\) :

Suction velocity

\(v_{w}<0\) :

Injection velocity

xy :

Cartesian coordinates (m)

\(\chi _{m}\) :

Auxiliary parameter

\(\varphi (\eta )\) :

Concentration similarity function

\(\Gamma \) :

Slip parameter

\(\gamma \) :

Dimensionless heat thermal relaxation time

\(\gamma _{c}\) :

Dimensionless mass thermal relaxation time

\(\eta \) :

Similarity parameter

\(\lambda _{T}\) :

Thermal relaxation time

\(\lambda \) :

Dimensionless constant

v :

Kinematic viscosity \((m^{2} s^{-1})\)

\(\Omega \) :

Dimensionless temperature difference

\(\theta (\eta )\) :

Temperature similarity function

\(\tau \) :

Ratio of the effective heat capacity

\(\rho \) :

Density \((kg m^{-1})\)

\(\sigma \) :

Electrical conductivity (S m)

\(\psi \) :

Stream function \((m s^{-1})\)

\(\zeta \) :

Dimensionless concentration difference

References

  1. K. Das, J. Egyptian Math. Soc. 23, 451–6 (2015)

    Article  MathSciNet  Google Scholar 

  2. A.V. Kuznetsov, D.A. Nield, Int. J. Therm. Sci. 49, 243–7 (2010)

    Article  Google Scholar 

  3. M.A.A. Hamad, I. Pop, A.I. Md Ismail, Nonlinear Anal. Real World Appl. 2, 1338–46 (2011)

    Article  Google Scholar 

  4. Nadeem S, Rizwan Ul Haq, Khan ZH., Appl. Nanosci. 4, 625–631 (2014)

  5. W.A. Khan, I. Pop, Int J Heat Mass Transfer 53, 2477–83 (2010)

    Article  Google Scholar 

  6. W.A. Khan, A. Aziz, Int. J. Therm. Sci. 50, 1207–14 (2011)

    Article  Google Scholar 

  7. W.A. Khan, A. Aziz, Int. J. Therm. Sci. 50, 2154–60 (2011)

    Article  Google Scholar 

  8. R.A. Van Gorder, E. Sweet, K. Vajravelu, Commun. Nonlinear Sci. Numer. Simul. 15, 1494–1500 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Hassan, M.M. Tabar, H. Nemati, G. Domairry, F. Noori, Int. J. Therm. Sci. 50, 2256–63 (2011)

    Article  Google Scholar 

  10. F.M. Hady, F.S. Ibrahim, S.M. Abdel-Gaied, M.R. Eid, Appl. Math. Mech. 32, 1577–86 (2011)

    Article  Google Scholar 

  11. T. Hayat, T. Muhammad, S.A. Shehzad, A. Alsaedi, Appl. Math. Mech. 36, 747–62 (2015)

    Article  Google Scholar 

  12. P. Rana, R. Bhargava, Commun. Nonlinear Sci. Numer. Simul. 17, 212–26 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  13. D. Domairry, M. Sheikholeslami, H.R. Ashorynejad, R.S.R. Gorla, M. Khani, J. Nanoeng. Nanosyst. 225, 11512 (2012)

    Google Scholar 

  14. Afify AA, Bazid MAA, J. Comput. Theor. Nanosci. 11, 2440–2448 (2014)

  15. O.D. Makinde, A. Aziz, Int. J. Thermal Sci. 50, 1326–32 (2011)

    Article  Google Scholar 

  16. P. Rana, R. Bhargava, O.A. Bg, Comput. Math. Appl. 64, 2816–32 (2012)

    Article  MathSciNet  Google Scholar 

  17. A.A. Afify, M.A.A. Bazid, J. Comput. Theor. Nanosci. 11, 210–8 (2014)

    Article  Google Scholar 

  18. N.S. Elgazery, J. Egypt Math. Soc. 27 (2019). https://doi.org/10.1186/s42787-019-0002-4

  19. A. Sriramalu, N. Kishan, R.J. Anand, J. Energy Heat Mass. Transf 23, 483–95 (2001)

    Google Scholar 

  20. I.C. Liu, Trans. Porous Media 64, 375–92 (2006)

    Article  Google Scholar 

  21. S. Nadeem, U.l. Haq Rizwan, N.S. Akbar, Z.H. Khan, Alexandria Eng. J. 52, 577–682 (2013)

  22. S. Pramanik, Ain Shams Eng. J. 5, 205–12 (2014)

    Article  Google Scholar 

  23. G. Mahanta, S. Shaw, Alexandria Eng. J. 54, 653–9 (2015)

    Article  Google Scholar 

  24. T. Abbas, M.M. Bhatti, M. Ayub, J. Process. Mech Eng. (2017). https://doi.org/10.1177/0954408917719791

  25. M. Sheikholeslami, Phys. Lett. A 381, 494–503 (2017)

    Article  ADS  Google Scholar 

  26. M. Zubair, Z. Shah, S. Islam, W. Khan, (Advances in Mechanical Engineering, Dawar A., 2019), p. 11

  27. S.Z. Abbas, W.A. Khan, S. Kadry, M. Ijaz Khan, M. Waqas, Khan M. Imran, Computer Methods and Programs in Biomedicine (2020). https://doi.org/10.1016/j.cmpb.2020.105363

  28. M.W. Ahmad, P. Kumam, Z. Shah, A.A. Farooq, R. Nawaz, A. Dawar, S. Islam, P. Thounthong, Entropy 21, 867 (2019). https://doi.org/10.3390/e21090867

    Article  ADS  Google Scholar 

  29. D. Pal, H. Mondal, Int. Commun. Heat Mass Transf. 39, 913–17 (2012)

    Article  Google Scholar 

  30. T. Hayat, T. Muhammad, S. Al-Mezal, S.J. Liao, Int. J. Numer. Methods Heat Fluid Flow 26, 2355–69 (2016)

    Article  Google Scholar 

  31. J.C. Umavathi, O. Ojjela, K. Vajravelu, Int. J. Thermal Sci. 111, 511–24 (2017)

    Article  Google Scholar 

  32. A.K. Alzahrani, Phys. Lett. A 382, 2938–43 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  33. A. Dawar, Z. Shah, W. Khan, S. Islam, M. Idrees, Adv. Mech. Eng. 11, 115 (2019)

    Google Scholar 

  34. A. Khan, Z. Shah, S. Islam et al., Adv. Mech. Eng. 10, 116 (2018)

    Google Scholar 

  35. G. Rasool, T. Zhang, A.J. Chamkha, A. Shadiq, I. Tlili, G. Shahzadi, Entropy 22, 18 (2020)

    Article  ADS  Google Scholar 

  36. K. Loganatha, S. Rajan, J. Therm. Anal. Calorim. 141, 2599–612 (2020)

    Article  Google Scholar 

  37. R. Ahmad, M. Mustafa, M. Turkyilmazoglu, Int. J. Heat Mass Transf. 111, 827–35 (2017)

    Article  Google Scholar 

  38. T. Hayat, M. Bilal Ashraf, S.A. Shehzad, A. Alsaedi, J. Appl. Fluid Mech. 8, 803–13 (2015)

    Article  Google Scholar 

  39. O.D. Makinde, A. Aziz, Int. J. Ther Sci. 50, 1326–32 (2011)

    Article  Google Scholar 

  40. K. Loganathan, S. Sivasankaran, M. Bhuvaneswari, S. Rajan, J. Therm. Anal. Calorim. 136, 401–9 (2019)

    Article  Google Scholar 

  41. G.S. Seth, M.K. Mishra, A.J. Chamkha, J. Nanofluids. 5, 511–21 (2016)

    Article  Google Scholar 

  42. T. Muhammad, A. Alsaedi, T. Hayat, S.A. Shehzad, Results Phys. 7, 2791–97 (2017)

    Article  ADS  Google Scholar 

  43. W.A. Khan, I. Pop, Int. J. Heat Mass Transf. 53, 2477–83 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032

    Article  Google Scholar 

  44. M. Imtiaz, A. Alsaedi, A. Shaq, T. Hayat, J. Mol. Liq. 229, 501–7 (2017). https://doi.org/10.1016/j.molliq.2016.12.103

    Article  Google Scholar 

  45. J. Buongiorno, J. Heat Transf. 128, 240–50 (2005). https://doi.org/10.1115/1.2150834

    Article  Google Scholar 

  46. R.S. Rivlin, J. Ericksen, Stress-deformation relations for isotropic materials. In: Collected Papers of RS Rivlin. Springer, Berlin, p. 911–1013 (1997). https://doi.org/10.1007/978-1-4612-2416-7-13

  47. R. Fosdick, K. Rajagopal, Thermodynamics and stability of fluids of third grade. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society (1980)

  48. M. Pakdemirli, Int. J. Nonlinear Mech. 27, 785–93 (1992). https://doi.org/10.1016/0020-7462(92)90034-5

    Article  ADS  Google Scholar 

  49. S.J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems (Shanghai Jiao Tong University, (Ph.D. thesis), Shanghai, China, 1992)

    Google Scholar 

  50. S.J. Liao, Int. J. Nonlinear Mech. 34, 759–78 (1999). https://doi.org/10.1016/S0020-7462(98)00056-0

    Article  ADS  Google Scholar 

  51. C.Y. Wang, ZAMM Z. Angew Math Mech. 69, 418–20 (1989). https://doi.org/10.1002/zamm.19890691115

    Article  Google Scholar 

  52. R.R. Gorla, I. Sidawi, Appl. Sci. Res. 52, 247–57 (1994). https://doi.org/10.1007/BF00853952

    Article  ADS  Google Scholar 

  53. O.D. Makinde, A. Aziz, Int. J. Therm. Sci. 50, 1326–32 (2011). https://doi.org/10.1016/j.ijthermalsci.2011.02.019

    Article  Google Scholar 

  54. M.M. Rashidi, S. Bagheri, E. Momoniat, N. Freidoonimehr, Ain Shams Eng. J. 8, 77–85 (2017)

    Article  Google Scholar 

  55. T. Hayat, R. Riaz, A. Aziz, A. Alsaedi, Phys. Scr. 94, 125703 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Deanship of Scientific Research at Princess Nourah Bint Abdulrahman University through the Fast-track Research Funding Program.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to K. Loganathan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loganathan, K., Alessa, N., Tamilvanan, K. et al. Significances of Darcy–Forchheimer porous medium in third-grade nanofluid flow with entropy features. Eur. Phys. J. Spec. Top. 230, 1293–1305 (2021). https://doi.org/10.1140/epjs/s11734-021-00056-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00056-6

Navigation