Skip to main content
Log in

Double-diffusive instability of Casson nanofluids with numerical investigations for blood-based fluid

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The paper investigates analytically the instability of Casson binary nanofluids and further numerically by taking blood as the base fluid. The blood being a non-Newtonian fluid is characterized by Casson model and is assumed to undergo nano-scale, solutal and buoyancy effects which induce convection currents in the flow. Nanoparticle volume fraction is taken to be so small in the fluid that initially it is assumed to be constant. Small disturbances are added to the solution and normal mode technique is used to convert partial differential equations into ordinary. Further, these equations are solved using one term Galerkin method for free–free, rigid–free and rigid–rigid boundaries. The complex expressions of Rayleigh number are simplified with valid approximations to get analytical results. Thermal, solutal and nano-scale effects are found to contribute equally and independent of each other while their overall impact is inversely proportional to Casson parameter. To get a complete insight of the problem, complex analytical expressions are explored numerically and the effects of various parameters on the instability of blood are depicted graphically using the software Mathematica. The alumina nanoparticles have more destabilizing impact on blood than copper and could play a significant role on human health, more specifically in the cardiovascular system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

a :

Wave number

c :

Nanofluid specific heat

C:

Solute concentration

\(C_{0} \) :

Solute concentration at upper layer

\(C_{1} \) :

Solute concentration at lower layer

d :

Depth of the layer

\(d_\mathrm{p}\) :

Diameter of nanoparticle

\(D_\mathrm{b} \) :

Brownian diffusion coefficient

\(D_\mathrm{{ct}}\) :

Diffusivity of soret type

\(D_\mathrm{s} \) :

Solutal diffusivity

\(D_\mathrm{t} \) :

Thermophoresis diffusion coefficient

\(D_\mathrm{{tc}} \) :

Diffusivity of Dufour type

\(e_{ij} \) :

Deformation rate

g:

Acceleration due to gravity

\(H_\mathrm{y}\) :

Yield stress for Casson fluid

k :

Thermal conductivity

\(k_\mathrm{b}\) :

Boltzmann’s constant

\(m_{x} \) :

Wave number in x-pivot

\(n_{y}\) :

Wave number in y-pivot

p :

Pressure

s :

Growth rate

t:

Time

T :

Temperature

\(T_{0}\) :

Temperature at upper layer

\(T_{1} \) :

Temperature at lower layer

v :

Velocity of fluid (\(v=(u,v,w))\)

\(\alpha _\mathrm{f}\) :

Thermal diffusivity of fluid

\(\beta \) :

Casson parameter

\(\beta _\mathrm{c}\) :

Solutal volumetric coefficient

\(\beta _\mathrm{t} \) :

Thermal volumetric coefficient

\(\mu \) :

Viscosity of the nanofluid

\(\mu _\mathrm{d} \) :

Dynamic viscosity

\(\tau \) :

Stress tensor

\(\rho _\mathrm{p} \) :

Nanoparticle density

\(\rho _{0}\) :

Fluid density at temperature \(T_{0} \)

\(\rho c\) :

Heat capacity

\(\phi _\mathrm{b}\) :

Initial nanoparticle volume fraction

\(L_\mathrm{e}\) :

Solute Lewis number

\(L_\mathrm{n} \) :

Nanofluid Lewis number

\(N_\mathrm{a}\) :

Diffusivity ratio

\(N_\mathrm{b} \) :

Particle density increment

\(N_\mathrm{{ct}}\) :

Soret parameter

\(N_\mathrm{{tc}}\) :

Dufour parameter

\(p_\mathrm{r}\) :

Prandtl number

\(R_\mathrm{a} \) :

Thermal Rayleigh number

\(R_\mathrm{m}\) :

Basic-density Rayleigh number

\(R_\mathrm{n} \) :

Nanoparticle Rayleigh number

\(R_\mathrm{s}\) :

Solute Rayleigh number

\(\sim \) :

Basic solution

\(\hat{\ }\) :

Perturbed quantities

\(*\) :

Non-dimensional variable

References

  1. S. Choi, D.A. In Siginer, H.P. Wang (Eds.), ASME FED- 231/MD-66 (1995)

  2. S.K. Murthy, Int. J. Nanomed 2, 2 (2007)

    Google Scholar 

  3. A. Zaman, N. Ali, I. Ali, Therm. Sci. Eng. Prog. (2018). https://doi.org/10.1016/j.tsep.2018.02.004

    Article  Google Scholar 

  4. M. Victoria, W. E. Huynh, S. Tang, V. Uskokovic., Acta Biomaterialia, 88, 422–447 (2019)

  5. J. Buongiorno, ASME J. Heat transf. 128, 240–250 (2006)

  6. D.A. Nield, A.V. Kuznetsov, Trans. Porous Med. 81, 13 (2010)

    Google Scholar 

  7. D. Yadav, G.S. Agrawal, R. Bhargava, Int J. Appl. Math. Mech. 7, 2 (2011)

    Google Scholar 

  8. D.A. Nield, A.V. Kuznetsov, Int. J. Heat Fluid Flow 32, 4 (2011)

    Article  Google Scholar 

  9. U. Gupta, J. Sharma, V. Sharma, Appl. Math. Mech. 6, 693–706 (2015)

  10. J. Sharma, U. Gupta, V. Sharma, J. Appl. Fluid Mech. 10, 1387–1395 (2017)

  11. D. Yadav, G.S. Agrawal, R. Bhargava, Int J. Therm. Sci. 60, 244–254 (2012)

  12. C.J. Etwire, Y.I. Seini, R. Musah, Diffus. Found. 11 (2017) (ISSN:2296-3642)

  13. G.C. Shit, R. Haldar, S.K. Ghosh, Int. J. Appl. Comput. Math. 2, 593–608 (2016)

  14. M. Ramzan, S. Inam, S.A. Shehzad, Alex. Eng. J. 55, 311–319 (2016)

  15. G.W. Scott Blair, Rheol. Acta Sep. 5, 3 (1966)

    Google Scholar 

  16. N. Lida, Jpn. J. Appl. Phys. 17, 1 (1978)

    Google Scholar 

  17. R.K. Dash, G. Jayaraman, K.N. Mehta, J. Biomech. 29, 7 (1996)

    Article  Google Scholar 

  18. P. Chaturani, R.P. Samy, Biorheology 23, 5 (1986)

    Article  Google Scholar 

  19. J.A. Gbadeyan, E.O. Titiloye, A.T. Adeosun, Heliyon 6, e03076 (2020)

  20. M. Hamid, M. Usman, Z.H. Khan, R. Ahmad, W. Wang, Phys. Lett. A. 383, 2400–2408 (2019)

  21. M. Aneja, A. Chandra, S. Sharma, Int. Commun. Heat Mass Transf. 114, 1045555 (2020)

  22. M.S. Aghighi, A. Ammar, C. Metivier, M. Gharagozlu, Int. J. Therm. Sci. 127, 79–90 (2018)

  23. J. Britton, Y. Xing, Comp. Fluids. 203, 104493 (2020)

  24. M. Hamid, M. Usman, Z.H. Khan, R.U. Haq, W. Wang, Int. Commun. Heat Mass Transf. 108, 104284 (2019)

  25. D.A. Nield, A.V. Kuznetsov, Europ. J. Mech. 29, 217–223 (2010)

  26. O.D. Makinde, A. Ogulu, J Mech Sci Technol 26, 1615–1622 (2012)

  27. T. Hayat, S.A. Shehzadi, A. Alsaedi, Appl. Math. Mech. Engl. Ed.33, 1301–1312 (2012)

  28. W.S.K. Muhammad, A. Nasir, Int. Commun. Heat Mass Transf. 109, 104314 (2019)

  29. R. Jawad, M.R. Azizah, O. Zurni, J. Appl. Math. (2016). https://doi.org/10.1155/2016/7535793

  30. U. Gupta, J. Sharma, M. Devi, Mater. Today Proc. 28, 1748–1752 (2020)

  31. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover Publications, New York, 1981)

    MATH  Google Scholar 

  32. M. Mustafa, T. Hayat, I. Pop, A. Aziz, Heat Transf. Asian Res. 40, 6 (2011) https://doi.org/10.1002/htj.20358

  33. S. Mehmood, M. Nawaz, A. Ali, Commun. Math. Appl. 9, 3 (2018), https://doi.org/10.26713/cmav9i3.795

Download references

Acknowledgements

One of the authors, Mamta Devi is thankful to Council of Scientific and Industrial Research, New Delhi-110012, India for the financial assistance in the form of JRF [Ref. No.: 09/135 (0895)/2019-EMR-1]. The authors express their gratefulness to the Reviewers for their valuable comments which have gone a long way in improving the quality of the paper.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Jyoti Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, U., Sharma, J. & Devi, M. Double-diffusive instability of Casson nanofluids with numerical investigations for blood-based fluid. Eur. Phys. J. Spec. Top. 230, 1435–1445 (2021). https://doi.org/10.1140/epjs/s11734-021-00053-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00053-9

Navigation