Skip to main content
Log in

Insight into the dynamics of blood conveying alumina nanoparticles subject to Lorentz force, viscous dissipation, thermal radiation, Joule heating, and heat source

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This analysis studies the impact of the pulsating flow of Al\(_2\)O\(_3\)-blood non-Newtonian nanofluid in a channel in the presence of the magnetic field and thermal radiation. Viscous dissipation and Joule heating effects are taken into account. Blood is taken as Oldroyd-B fluid (base fluid) and Al\(_2\)O\(_3\) as nanoparticles. The present study is important in engineering and biological models. The walls of channel are assumed to be semi-infinite in length. Assumed that the flow is fully developed and induced by a pressure gradient. Analytical solutions for flow variables are obtained using the perturbation method. The influence of different parameters on temperature and rate of heat transfer have been analysed through graphical results. The results reveal that the temperature of nanofluid accelerates by increasing viscous dissipation and heat source and frequency parameter. Further, the rate of heat transfer enhances with an increase in nanoparticle volume fraction and viscous dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.Y. Wang, J. Appl. Mech. 38, 553 (1971)

    Article  ADS  Google Scholar 

  2. A.R. Bestman, Int. J. Heat Mass Trans. 25, 675 (1982)

    Article  Google Scholar 

  3. N. Datta, D.C. Dalal, Int. J. Multiphase Flow. 21, 515 (1995)

    Article  Google Scholar 

  4. Y.A. Elmaboud, K.S. Mekheimer, Z. Naturforsch. 67, 185 (2012)

    Article  ADS  Google Scholar 

  5. C.K. Kumar, S. Srinivas, Eng. Trans. 65, 461 (2017)

    Google Scholar 

  6. G. Radhakrishnamacharya, M.K. Maiti, Int. J. Heat Mass Trans. 20, 171 (1977)

    Article  Google Scholar 

  7. T. Malathy, S. Srinivas, Int. Commun. Heat Mass 35, 681 (2008)

    Article  Google Scholar 

  8. S. Srinivas, C.K. Kumar, A.S. Reddy, Nonlinear Anal. Model Control. 23, 213 (2018)

    Article  MathSciNet  Google Scholar 

  9. J. Pan, Y. Bian, Y. Liu, F. Zhang, Y.Y.H. Arima, Int. J. Heat Mass Transfer 147, 118932 (2020)

    Article  Google Scholar 

  10. J.G. Oldroyd, Proc. R. Phys. Soc. Lond. A245, 278 (1958)

    ADS  MathSciNet  Google Scholar 

  11. K.R. Rajagopal, R.K. Bhatnagar, Acta Mech. 113, 233 (1995)

    Article  MathSciNet  Google Scholar 

  12. S. Asghar, S. Parveen, A. Hanif, A.M. Siddiqui, T. Hayat, Int. J. Eng. Sci. 41, 609 (2003)

    Article  Google Scholar 

  13. Z. Abbas, Y. Wang, T. Hayat, M. Oberlack, Int. J. Nonlinear Mech. 43, 783 (2008)

    Article  ADS  Google Scholar 

  14. C. Fetecau, C. Fetecau, Int. J. Eng. Sci. 43, 340 (2005)

    Article  Google Scholar 

  15. T. Hayat, M. Imtiaz, A. Alsaedi, Appl. Math. Mech. Engl. Ed. 37, 573 (2016)

    Article  Google Scholar 

  16. B. Mahanthesh, B.J. Gireesha, S.A. Shehzad, F.M. Abbasi, R.S.R. Gorla, Appl. Math. Mech. Engl. Ed. 38, 969 (2017)

    Article  Google Scholar 

  17. F. Osmanlic, C. Korner, Comput. Fluids. 124, 190 (2016)

    Article  MathSciNet  Google Scholar 

  18. R. Mehmood, S. Rana, O. Anwar-Beg, A. Kadir, J. Braz. Soc. Mech. Sci. Eng. 40, 526 (2018)

    Article  Google Scholar 

  19. S. Srinivas, T. Malathy, P.L. Sachdev, Eng. Trans. 55, 79 (2007)

    Google Scholar 

  20. L. Zheng, Y. Liu, X. Zhang, Math. Comput. Model. 54, 780 (2011)

    Article  Google Scholar 

  21. A.K. Ghosh, S.K. Datta, P. Sen, Int. J. Appl. Comput. Math. 2, 365 (2016)

    Article  MathSciNet  Google Scholar 

  22. N. Sandeep, M. Gnaneswara-Reddy, Eur. Phys. J. Plus 132, 147 (2017)

    Article  Google Scholar 

  23. M. Mustafa, Int. J. Heat Mass Transfer 113, 1012 (2017)

    Article  Google Scholar 

  24. T. Malathy, S. Srinivas, A.S. Reddy, J. Porous Media 20, 287 (2017)

    Article  Google Scholar 

  25. S.U.S. Choi, ASME FED 31/MD 66, 99 (1995)

  26. M. Sheikholeslami, D.D. Ganji, M.Y. Javed, R. Ellahi, J. Magn. Magn. Mater. 374, 36 (2015)

    Article  ADS  Google Scholar 

  27. C. Zhang, L. Zheng, X. Zhang, G. Chen, Appl. Math. Model. 39, 165 (2015)

    Article  MathSciNet  Google Scholar 

  28. M. Hatami, M. Sheikholeslami, D.D. Ganji, J. Mol. Liq. 195, 230 (2014)

    Article  Google Scholar 

  29. S.M.M. El-Kabeir, A.J. Chamkha, A.M. Rashad, J. Porous Media 17, 269 (2014)

    Article  Google Scholar 

  30. A. Malvandi, A. Ghasemi, D.D. Ganji, Int. J. Therm. Sci. 109, 10 (2016)

    Article  Google Scholar 

  31. M. Sheikholeslami, M. Gorji-Bandpy, D.D. Ganji, J. Taiwan Inst. Chem. Engineers 45, 1204 (2014)

    Article  Google Scholar 

  32. C. Zhang, L. Zheng, X. Zhang, G. Chen, Appl. Math. Model. 39, 165 (2015)

    Article  MathSciNet  Google Scholar 

  33. H. Thameem-Basha, R. Sivaraj, A. Subramanyam-Reddy, A.J. Chamkha, Eur. Phys. J. Spec. Top. 228, 2531 (2019)

    Article  Google Scholar 

  34. G. Kumaran, R. Sivaraj, A. Subramanyam-Reddy, B. Rushi-Kumar, V. Ramachandra-Prasad, Eur. Phys. J. Spec. Top. 228, 2647 (2019)

    Article  Google Scholar 

  35. S. Agarwal, P. Rana, Eur. Phys. J. Plus 131, 101 (2016)

    Article  Google Scholar 

  36. M. Irfan, M. Khan, W.A. Khan, M. Sajid, Appl. Phys. A. 124, 674 (2018)

    Article  ADS  Google Scholar 

  37. T. Hayat, T. Hussain, S.A. Shehzad, A. Alsaedi, Appl. Math. Mech. -Engl. Ed. 36, 69 (2015)

    Article  Google Scholar 

  38. M. Hatami, J. Hatami, D.D. Ganji, Comput. Methods Progr. Biomed. 113, 632 (2014)

    Article  Google Scholar 

  39. N.S. Akbar, IEEE Trans. Nanotechnol. 14, 452 (2015)

    Article  ADS  Google Scholar 

  40. A. Vijayalakshmi, S. Srinivas, J. Mech. 19, 213 (2017)

    Article  Google Scholar 

  41. S. Srinivas, A. Vijayalakshmi, A.S. Reddy, J. Mech. 33, 395 (2017)

    Article  Google Scholar 

  42. C.K. Kumar, S. Srinivas, A.S. Reddy, J. Mech. 2020, 5 (2020)

    Google Scholar 

  43. S. Ijaz, S. Nadeem, J. Mol. Liq. 248, 809 (2017)

    Article  Google Scholar 

  44. N.S. Elgazery, J. Egypt. Math. Soc. 27, 39 (2019)

    Article  MathSciNet  Google Scholar 

  45. S. Ijaz, S. Nadeem, J. Mol. Liq. 262, 565 (2018)

    Article  Google Scholar 

  46. M.K. Nayak, Int. J. Mech. Sci. 124–125, 185 (2017)

    Article  Google Scholar 

  47. R. Cortell, Phys. Lett. A 372, 631 (2008)

    Article  ADS  Google Scholar 

  48. N. Ahmed, A. Adnan, U. Khan, S.T. Mohyud-Din, Colloids Surf. A: Physicochem. Eng. Aspects 522, 389 (2017)

    Article  Google Scholar 

  49. S.O. Salawu, R.A. Kareem, M.D. Shamshuddin, S.U. Khan, Chem. Phys. Lett. 760, 138011 (2020)

    Article  Google Scholar 

  50. M.S. Hashmi, N. Khan, S.U. Khan, M.I. Khan, N.B. Khan, M. Nazeer, S. Kadry, Y.-M. Chu, Alexandria Eng. J. 2020, 6 (2020)

    Google Scholar 

  51. V. Miralles, A. Huerre, F. Malloggi, M.C. Jullien, A review of heating and temperature control in microfluidic systems: techniques and applications. Diagnostics 3(1), 33 (2013)

    Article  Google Scholar 

  52. D. Benyamin, Thermal microfluidic devices; design, fabrication and applications (2016), Dissertations 621 (2009). https://epublications.marquette.edu/dissertations_mu/621

  53. T. Hayat, A. Shafiq, A. Alsaedi, PLoS One 9(1), e83153 (2004)

    Article  ADS  Google Scholar 

  54. M. Nazeer, N. Ali, F. Ahmad, W. Ali, A. Saleem, Z. Ali, A. Sarfraz, Int. Commun. Heat Mass Transfer 117, 104744 (2020)

    Article  Google Scholar 

  55. C.-H. Chen, J. Heat Transfer 132, 064503-1 (2010)

    Article  Google Scholar 

  56. T. Hayat, S. Qayyum, M.I. Khan, A. Alsaedi, Phys. Fluids 30, 017101 (2018)

    Article  ADS  Google Scholar 

  57. A. Khan, Z. Shah, E. Alzahrani, S. Islam, Int. Commun. Heat Mass Transfer 119, 104979 (2020)

    Article  Google Scholar 

  58. Md. Shamshuddin, S.R. Mishra, O. Anwar-Beg, A. Kadir, Arab. J. Sci. Eng. 2019, 7 (2019)

  59. E.H. Aly, I. Pop, Powder Technol. 367, 192 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Subramanyam Reddy.

Appendix

Appendix

\(B_1 = \frac{{A_2 }}{{A_1 }};\quad B_2 = \frac{{A_5 M^2 }}{{A_1 }};\quad B_3 = \frac{{B_2 }}{{B_1 }};\quad B_4 = - \frac{H^2}{{A_1 B_1 }};B_6 = \frac{{B_4 (e^{ - \sqrt{B_3 } } - 1)}}{{B_3 (e^{ - \sqrt{B_3 } } - e^{\sqrt{B_3 } } )}};\) \(B_5 = \frac{{B_4 }}{{B_3 }} - B_6;\) \(\quad B_7 = (\frac{{M^2 A_5 }}{{A_1 }} + iH^2 )\beta ^2;\quad B_8 = \frac{{B_7 }}{{B_1 }}; \quad B_9 \!=\! - \frac{{H^2\beta ^2 }}{{A_1 B_1 }};\) \(B_{11} \!=\! \frac{{B_9 (e^{ - \sqrt{B_8 } } - 1)}}{{B_8 (e^{ - \sqrt{B_8 } } - e^{\sqrt{B_8 } } )}};\) \(B_{10} = \frac{{B_9 }}{{B_8 }} - B_{11};\quad C_{1} = \frac{{A_4 }}{{A_3 }} + \frac{4}{3}\frac{1}{{A_3 }}Rd;\) \( C_{2} = -\frac{Q \Pr }{A_3};\) \(C_{3}=C_2/C_1; \qquad C_{4}=-\frac{A_2}{A_3C_1}Ec\Pr ;\qquad C_{5}=-\frac{A_5}{A_3C_1}Ec\Pr M^2;\) \( C_6=C_4B_5^2B_3+C_5B_5^2;\qquad C_7=C_4B_6^2B_3+C_5B_6^2;\qquad C_8=-2C_5\frac{B_4}{B_3}B_5;\)    \(C_9=-2C_5\frac{B_4}{B_3}B_6;\quad C_{10}=-2C_4B_5B_6B_3+C_5\frac{B_4^2}{B_3^2}+2C_5B_5B_6;\)      \(C_{13}=\frac{C_6}{4B_3-C_3};\qquad C_{14}=\frac{C_7}{4B_3-C_3};\) \( C_{15}=\frac{C_8}{B_3-C_3};\qquad C_{16}=\frac{C_9}{B_3-C_3};\qquad C_{17}=-\frac{C_{10}}{C_{3}};\qquad C_{12}\) \(=\{1-[C_{13}(e^{-2\sqrt{B_3}}-e^{-\sqrt{C_3}})+C_{14}(e^{2\sqrt{B_3}}-e^{-\sqrt{C_3}})\) \(+C_{15}(e^{-\sqrt{B_3}}-e^{-\sqrt{C_3}})+C_{16}(e^{\sqrt{B_3}}-e^{-\sqrt{C_3}})+C_{17}(1-e^{-\sqrt{C_3}})]\}/{e^{\sqrt{C_3}}-e^{-\sqrt{C_3}}};\) \(C_{11}=-(C_{12}+C_{13}+C_{14}+C_{15}+C_{16}+C_{17});\quad C_{18}=iH^2\Pr -\frac{Q\Pr }{A_3};\quad C_{19}=\frac{C_{18}}{C_1};\quad C_{20}=2C_{4}B_5B_{10}\sqrt{B_3B_8};\)   \( C_{21}=-2C_{4}B_5B_{11}\sqrt{B_3B_8};\)   \( C_{22}=-2C_{4}B_6B_{10}\sqrt{B_3B_8};\)   \( C_{23}=2C_{4}B_6B_{11}\sqrt{B_3B_8};\)   \( C_{24}=2C_5B_5B_{10};\quad C_{25}=2C_5B_5B_{11};\quad C_{26}=2C_5B_6B_{10};\quad \) \( C_{27}=2C_5B_6B_{11};\quad C_{28}\!=\!-2C_5B_5\frac{B_9}{B_8};\quad C_{29}\!=\!-2C_5B_6\frac{B_9}{B_8}; \quad \) \( C_{30}=-2C_5B_{10}\frac{B_4}{B_3};\quad C_{31}=-2C_5B_{11}\frac{B_4}{B_3}; \quad C_{32}=2C_5\frac{B_4}{B_3}\) \(\frac{B_9}{B_8}; \quad C_{35}=\frac{C_{20}+C_{24}}{(\sqrt{B_3}+\sqrt{B_8})^2-C_{19}}; \quad C_{36}=\frac{C_{21}+C_{25}}{(\sqrt{B_3}-\sqrt{B_8})^2-C_{19}}; \quad \) \( C_{37}=\frac{C_{22}+C_{26}}{(\sqrt{B_3}-\sqrt{B_8})^2-C_{19}};\)    \(C_{38}=\frac{C_{23}+C_{27}}{(\sqrt{B_3}+\sqrt{B_8})^2-C_{19}}; C_{39}=\frac{C_{28}}{B_3-C_{19}}; C_{40}=\frac{C_{29}}{B_3-C_{19}};\quad C_{41}=\frac{C_{30}}{B_8-C_{19}};\quad C_{42}=\frac{C_{31}}{B_8-C_{19}};\quad \) \( C_{43}=\frac{-C_{32}}{C_{19}};\quad C_{34}=\{-[C_{35}(e^{-(\sqrt{B_3}+\sqrt{B_8})}-e^{-\sqrt{C_{19}}})\) \(+C_{36}(e^{-(\sqrt{B_3}-\sqrt{B_8})}-e^{-\sqrt{C_{19}}})+C_{37}(e^{(\sqrt{B_3}-\sqrt{B_8})}-e^{-\sqrt{C_{19}}})+C_{38}(e^{(\sqrt{B_3}+\sqrt{B_8})}-e^{-\sqrt{C_{19}}})\) \(+\,C_{39}(e^{-\sqrt{B_3}}-e^{-\sqrt{C_{19}}})+C_{40}(e^{\sqrt{B_3}}-e^{-\sqrt{C_{19}}})+C_{41}(e^{-\sqrt{B_8}}-e^{-\sqrt{C_{19}}})\) \(+\,C_{42}(e^{\sqrt{B_8}}-e^{-\sqrt{C_{19}}})+C_{43}(1-e^{-\sqrt{C_{19}}})]\}/{e^{\sqrt{C_{19}}}-e^{-\sqrt{C_{19}}}};\)   \(C_{33}=-(C_{34}+C_{35}+C_{36}+C_{37}+C_{38}+C_{39}+C_{40}+C_{41}+C_{42}+C_{43})\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatesan, G., Reddy, A.S. Insight into the dynamics of blood conveying alumina nanoparticles subject to Lorentz force, viscous dissipation, thermal radiation, Joule heating, and heat source. Eur. Phys. J. Spec. Top. 230, 1475–1485 (2021). https://doi.org/10.1140/epjs/s11734-021-00052-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00052-w

Navigation