Skip to main content

Advertisement

Log in

Bioconvection aspects in non-Newtonian three-dimensional Carreau nanofluid flow with Cattaneo–Christov model and activation energy

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this article, a mathematical model is envisaged to scrutinize the aspect of swimming motile microorganisms for a steady 3D convectional flow of Carreau nanofluid towards a bidirectional stretching surface. Various researchers in the past years are collaborating in the nanotechnology field due to their improvement in heat capacity, chemotherapy for cancer, microelectronics, cooling of energy storage devices, cooling of nuclear system, air conditioning, and nanochips, etc. The novel concept of activation energy and double stratification effects is considered to analyze the flow problem. Thermal relaxation time and concentration relaxation time properties are both determined by implementing Cattaneo–Christov heat and mass flux in the energy and mass equation. Suitable similarity approximations are utilized to convert governing PDEs into dimensionless ODEs. Numerical solutions are determined to utilize collocation finite difference technique and 3-stages Lobatto-IIIa formula. The obtained ODE’s are resolved numerically by engaged built-in function bvp4c solver in computational software MATLAB. The behavior of various emerging parameters and local skin friction coefficients, local Nusselt numbers, local Sherwood number, motile microorganisms’ number, velocity profiles, temperature profile, concentration profile and microorganism concentration is elaborated with the help of graph and tables. Carreau fluid model is a particular category of established non-Newtonian fluid that exemplifies shear thinning \( n<1 \) , shear thickening \( n>1 \) at high shearing rates. It is examined that the influence of the mixed convection parameter against temperature distribution both the temperature field of the shear-thinning/thickening liquids is reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. S.U. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab., IL, USA (1995)

  2. J. Buongiorno, Convective transport in nanofluids. J. Heat Transf. 128(3), 240–250 (2006)

    Google Scholar 

  3. M. Ahmad, T. Muhammad, I. Ahmad, S. Aly, Time-dependent 3D flow of viscoelastic nanofluid over an unsteady stretching surface. Stat. Mech. Appl. Phys. A. 551, 124004 (2020)

    MathSciNet  Google Scholar 

  4. S. Jabeen, T. Hayat, A. Alsaedi, M.S. Alhodaly, Consequences of activation energy and chemical reaction in radiative flow of tangent hyperbolic nanoliquid. Sci. Iran. 26(6), 3928–3937 (2019)

    Google Scholar 

  5. A. Hamid, M. Khan, Thermo-physical characteristics during the flow and heat transfer analysis of GO-nanoparticles adjacent to a continuously moving thin needle. Chin. J. Phys. 64, 227–240 (2020)

    MathSciNet  Google Scholar 

  6. J. Ahmed, M. Khan, L. Ahmad, MHD von Karman swirling flow in the Maxwell nanofluid with nonlinear radiative heat flux and chemical reaction. Heat Transf. Res. 51(4), 377–394 (2020)

    Google Scholar 

  7. Y. Menni, A.J. Chamkha, N. Massarotti, H. Ameur, N. Kaid, M. Bensafi, Hydrodynamic and thermal analysis of water, ethylene glycol and water-ethylene glycol as base fluids dispersed by aluminum oxide nano-sized solid particles. Int. J. Numer. Methods Heat Fluid Flow (2020). https://doi.org/10.1108/HFF-10-2019-0739

    Article  Google Scholar 

  8. I. Waini, A. Ishak, I. Pop, Transpiration effects on hybrid nanofluid flow and heat transfer over a stretching/shrinking sheet with uniform shear flow. Alex. Eng. J. 59(1), 91–99 (2020)

    Google Scholar 

  9. S. Nadeem, N. Abbas, M.Y. Malik, Inspection of hybrid based nanofluid flow over a curved surface. Comput. Methods Programs Biomed. 189, 105193 (2020)

    Google Scholar 

  10. M. Irfan, M. Khan, W.A. Khan, K. Rafiq, Physical aspects of shear thinning/thickening behavior in radiative flow of magnetite Carreau nanofluid with nanoparticle mass flux conditions. Appl. Nanosci. 10, 1–13 (2020)

    Google Scholar 

  11. A. Asadollahi, S. Rashidi, J.A. Esfahani, R. Ellahi, Simulating phase change during the droplet deformation and impact on a wet surface in a square microchannel: an application of oil drops collision. Eur. Phys. J. Plus 133(8), 306 (2018)

    Google Scholar 

  12. A. Majeed, A. Zeeshan, F.M. Noori, U. Masud, Influence of rotating magnetic field on Maxwell saturated ferrofluid flow over a heated stretching sheet with heat generation/absorption. Mech. Ind. 20(5), 502 (2019)

    Google Scholar 

  13. H. Babazadeh, A. Zeeshan, K. Jacob, A. Hajizadeh, M.M. Bhatti, Numerical modelling for nanoparticle thermal migration with effects of shape of particles and magnetic field inside a porous enclosure. Iran. J. Sci. Technol. Trans. Mech. Eng. (2020). https://doi.org/10.1007/s40997-020-00354-9

  14. T. Muhammad, H. Waqas, S.A. Khan, R. Ellahi, S.M. Sait, Significance of nonlinear thermal radiation in 3D Eyring-Powell nanofluid flow with Arrhenius activation energy. J. Therm. Anal. Calorim. 143, 1–16 (2020)

    Google Scholar 

  15. R. Ellahi, Recent developments of nanofluids. MDPI-Multidisciplinary Digital Publishing Institute (2018)

  16. L. Zhang, M.B. Arain, M.M. Bhatti, A. Zeeshan, H. Hal-Sulami, Effects of magnetic Reynolds number on swimming of gyrotactic microorganisms between rotating circular plates filled with nanofluids. Appl. Math. Mech. 41(4), 637–654 (2020)

    MathSciNet  MATH  Google Scholar 

  17. P.J. Carreau, Rheological equations from molecular network theories. Trans. Soc. Rheol. 16(1), 99–127 (1972)

    Google Scholar 

  18. M. Khan, M. Irfan, W.A. Khan, A.S. Alshomrani, A new modeling for 3D Carreau fluid flow considering nonlinear thermal radiation. Results Phys. 7, 2692–2704 (2017)

    ADS  Google Scholar 

  19. M. Irfan, K. Rafiq, W.A. Khan, M. Khan, Numerical analysis of unsteady Carreau nanofluid flow with variable conductivity. Appl. Nanosci. 10, 1–10 (2020)

    Google Scholar 

  20. M.M. Bhatti, R. Ellahi, A. Zeeshan, M. Marin, N. Ijaz, Numerical study of heat transfer and Hall current impact on peristaltic propulsion of particle-fluid suspension with compliant wall properties. Mod. Phys. Lett. B 33(35), 1950439 (2019)

    ADS  MathSciNet  Google Scholar 

  21. M.A. Yousif, H.F. Ismael, T. Abbas, R. Ellahi, Numerical study of momentum and heat transfer of MHD Carreau nanofluid over an exponentially stretched plate with internal heat source/sink and radiation. Heat Transf. Res. 50(7), 649–658 (2019)

    Google Scholar 

  22. C.S.K. Raju, M.M. Hoque, N.A. Khan, M. Islam, S. Kumar, Multiple slip effects on magnetic-Carreau fluid in a suspension of gyrotactic microorganisms over a slendering sheet. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 233(2), 254–266 (2019)

    Google Scholar 

  23. J.R. Platt, “Bioconvection Patterns” in cultures of free-swimming organisms. Science 133(3466), 1766–1767 (1961)

    ADS  Google Scholar 

  24. D. Pal, S.K. Mondal, MHD nanofluid bioconvection over an exponentially stretching sheet in the presence of gyrotactic microorganisms and thermal radiation. BioNanoScience 8(1), 272–287 (2018)

    Google Scholar 

  25. Y. Wang, H. Waqas, M. Tahir, M. Imran, C.Y. Jung, Effective Prandtl aspects on bio-convective thermally developed magnetized tangent hyperbolic nanoliquid with gyrotactic microorganisms and second order velocity slip. IEEE Access 7, 130008–130023 (2019)

    Google Scholar 

  26. S.M.H. Zadeh, S.A.M. Mehryan, M.A. Sheremet, M. Izadi, M. Ghodrat, Numerical study of mixed bio-convection associated with a micropolar fluid. Therm. Sci. Eng. Prog. 18, 100539 (2020)

    Google Scholar 

  27. M.J. Uddin, M.N. Kabir, Y. Alginahi, O.A. Bég, Numerical solution of bio-nano-convection transport from a horizontal plate with blowing and multiple slip effects. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 233(19–20), 6910–6927 (2019)

    Google Scholar 

  28. A. Imran, R. Akhtar, Z. Zhiyu, M. Shoaib, M.A.Z. Raja, Heat transfer analysis of biological nanofluid flow through ductus efferentes. AIP Adv. 10(3), 035029 (2020)

    ADS  Google Scholar 

  29. K. Javid, M. Waqas, Z. Asghar, A. Ghaffari, A theoretical analysis of Biorheological fluid flowing through a complex wavy convergent channel under porosity and electro-magneto-hydrodynamics effects. Comput. Methods Programs Biomed. 191, 105413 (2020)

    Google Scholar 

  30. S.A. Hussain, G. Ali, S.I.A. Shah, S. Muhammad, M. Ishaq, Bioconvection model for magneto hydrodynamics squeezing nanofluid flow with heat and mass transfer between two parallel plates containing gyrotactic microorganisms under the influence of thermal radiations. J. Math. 51(4), 13–36 (2019). ISSN 1016-2526

    MathSciNet  Google Scholar 

  31. A. Shahid, H. Huang, M.M. Bhatti, L. Zhang, R. Ellahi, Numerical investigation on the swimming of gyrotactic microorganisms in nanofluids through porous medium over a stretched surface. Mathematics 8(3), 380 (2020)

    Google Scholar 

  32. H. Waqas, S.U. Khan, M. Hassan, M.M. Bhatti, M. Imran, Analysis on the bioconvection flow of modified second-grade nanofluid containing gyrotactic microorganisms and nanoparticles. J. Mol. Liq. 291, 111231 (2019)

    Google Scholar 

  33. T. Muhammad, S.Z. Alamri, H. Waqas, D. Habib, R. Ellahi, Bioconvection flow of magnetized Carreau nanofluid under the influence of slip over a wedge with motile microorganisms. J. Therm. Anal. Calorim. 143, 1–13 (2021)

    Google Scholar 

  34. A.R. Bestman, Natural convection boundary layer with suction and mass transfer in a porous medium. Int. J. Energy Res. 14(4), 389–96 (1990)

    Google Scholar 

  35. S.U. Khan, H. Waqas, S.A. Shehzad, M. Imran, Theoretical analysis of tangent hyperbolic nanoparticles with combined electrical MHD, activation energy and Wu’s slip features: a mathematical model. Phys. Scr. 94(12), 125211 (2019)

    ADS  Google Scholar 

  36. G. Ji, A. Raheem, X. Wang, W. Fu, B. Qu, Y. Gao, Z. Zhang, Kinetic analysis of algae gasification by distributed activation energy model. Processes 8(8), 927 (2020)

    Google Scholar 

  37. D.W. Kang, K.A. Lee, M. Kang, J.M. Kim, M. Moon, J.H. Choe, C.S. Hong, Cost-effective porous-organic-polymer-based electrolyte membranes with superprotonic conductivity and low activation energy. J. Mater. Chem. A 8(3), 1147–1153 (2020)

    Google Scholar 

  38. C. Cattaneo, Sulla conduzioned elcalore. Atti Semin Mat Fis Univ Modena Reggio Emilia. 3, 83–101 (1948)

    Google Scholar 

  39. C.I. Christov, On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mech. Res. Commun. 36, 481–486 (2009)

    MathSciNet  MATH  Google Scholar 

  40. S.U. Khan, I. Tlili, H. Waqas, M. Imran, Effects of nonlinear thermal radiation and activation energy on modified second-grade nanofluid with Cattaneo-Christov expressions. J. Therm. Anal. Calorim. 143, 1–12 (2020)

    Google Scholar 

  41. M. Waqas, M.I. Khan, F. Alzahrani, A. Hobiny, Characterization of thermal-dependent conductivity in Cattaneo-Christov (CC)-based buoyancy-driven incompressible flow. Appl. Nanosci. 10, 1–7 (2020)

    Google Scholar 

  42. M. Irfan, M. Khan, W.A. Khan, Interaction between chemical species and generalized Fourier’s law on 3D flow of Carreau fluid with variable thermal conductivity and heat sink/source: a numerical approach. Results Phys. 10, 107–117 (2018)

    ADS  Google Scholar 

  43. M. Khan, M. Irfan, W.A. Khan, A.S. Alshomrani, A new modeling for 3D Carreau fluid flow considering nonlinear thermal radiation. Results Phys. 7, 2692–2704 (2017)

    ADS  Google Scholar 

  44. M. Irfan, M.S. Anwar, M. Rashid, M. Waqas, W.A. Khan, Arrhenius activation energy aspects in mixed convection Carreau nanofluid with nonlinear thermal radiation. Appl. Nanosci. 10, 1–11 (2020)

    Google Scholar 

  45. C.Y. Wang, The three-dimensional flow due to a stretching flat surface. Phys. Fluids 27(8), 1915–1917 (1984)

    ADS  MathSciNet  MATH  Google Scholar 

  46. I.C. Liu, H.I. Andersson, Heat transfer over a bidirectional stretching sheet with variable thermal conditions. Int. J. Heat Mass Transf. 51(15–16), 4018–4024 (2008)

    MATH  Google Scholar 

  47. A. Munir, A. Shahzad, M. Khan, Convective flow of Sisko fluid over a bidirectional stretching surface. PLoS One 10(6), e0130342 (2015)

    Google Scholar 

  48. M. Irfan, M. Khan, W.A. Khan, On model for three-dimensional Carreau fluid flow with Cattaneo-Christov double diffusion and variable conductivity: a numerical approach. J. Braz. Soc. Mech. Sci. Eng. 40(12), 577 (2018)

    Google Scholar 

  49. W.A. Khan, M. Irfan, M. Khan, An improved heat conduction and mass diffusion models for rotating flow of an Oldroyd-B fluid. Results Phys. 7, 3583–3589 (2017)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Bhatti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waqas, H., Imran, M. & Bhatti, M.M. Bioconvection aspects in non-Newtonian three-dimensional Carreau nanofluid flow with Cattaneo–Christov model and activation energy. Eur. Phys. J. Spec. Top. 230, 1317–1330 (2021). https://doi.org/10.1140/epjs/s11734-021-00046-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00046-8

Navigation