Skip to main content
Log in

Three-dimensional flow of a power-law nanofluid within a cubic domain filled with a heat-generating and 3D-heterogeneous porous medium

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this study, 3D-SIMPLE algorithm in the finite volume method (FVM) is introduced for investigating the convective flow of a power-law nanofluid within a cubic enclosure. The three-dimensional domain is filled by a heat-generating and 3D-heterogeneous porous media. The non-Newtonian power-law nanofluid is simulated using the two-phase model and case of the shear thickening fluids is considered. Three different levels of heterogeneous porous media and three values of power-law indices are investigated on the temperature, streamlines, nanoparticle volume fraction, isosurfaces of temperature and vertical velocity W. The obtained results indicated that with a homogeneous porous medium and Newtonian fluid, the temperature and nanoparticle volume fraction distributions are raising inside the cubic enclosure. Variations on the nanoparticle volume fraction under impacts of buoyancy ratio and thermophoresis parameters are reflecting the essential of the non-homogeneous distributions of the nanoparticle volume fraction. The maximum temperature rose in the cases of Newtonian fluid and homogeneous porous medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Chol, Enhancing thermal conductivity of fluids with nanoparticles. ASME Publ. Fed 231, 99–106 (1995)

    Google Scholar 

  2. G. Lazarus, R. Balakrishnan, M.L. Dhasan, S. Wongwises, Enhancement of heat transfer using nanofluids—an overview. Renew. Sustain. Energy Rev. 14, 629–641 (2010)

    Article  Google Scholar 

  3. A.M. Aly, Z.A.S. Raizah, Incompressible smoothed particle hydrodynamics simulation of natural convection in a nanofluid-filled complex wavy porous cavity with inner solid particles. Phys. A 537, 122623 (2020)

    Article  MathSciNet  Google Scholar 

  4. M. Hemmat-Esfe, R. Barzegarian, M. Bahiraei, A 3D numerical study on natural convection flow of nanofluid inside a cubical cavity equipped with porous fins using two-phase mixture model. Adv. Powder Technol. 2020, 10 (2020)

    Google Scholar 

  5. A. Hussanan, M. Qasim, Z.-M. Chen, Heat transfer enhancement in sodium alginate based magnetic and non-magnetic nanoparticles mixture hybrid nanofluid. Phys. A 550, 123957 (2020)

    Article  MathSciNet  Google Scholar 

  6. M. Rajarathinam, N. Nithyadevi, A.J. Chamkha, Heat transfer enhancement of mixed convection in an inclined porous cavity using Cu-water nanofluid. Adv. Powder Technol. 29, 590–605 (2018)

    Article  Google Scholar 

  7. S. Ahmed, M. Mansour, E. Abd-Elsalam, E. Mohamed, Effect of the fractional derivatives on unsteady natural convection of a nanofluid in an enclosure. Latin Am. Appl. Res. 50, 13–19 (2020)

    Google Scholar 

  8. S.E. Ahmed, A.M. Aly, Mixed convection in a nanofluid-filled sloshing porous cavity including inner heated rose. J. Therm. Anal. Calorim. 2020, 15 (2020)

    Google Scholar 

  9. Y.J. Zhuang, H.Z. Yu, Q.Y. Zhu, A thermal non-equilibrium model for 3D double diffusive convection of power-law fluids with chemical reaction in the porous medium. Int. J. Heat Mass Transf. 115, 670–694 (2017)

    Article  Google Scholar 

  10. Q.Y. Zhu, Y.J. Zhuang, H.Z. Yu, Three-dimensional numerical investigation on thermosolutal convection of power-law fluids in anisotropic porous media. Int. J. Heat Mass Transf. 104, 897–917 (2017)

    Article  Google Scholar 

  11. Q.Y. Zhu, Y.J. Zhuang, H.Z. Yu, Entropy generation due to three-dimensional double-diffusive convection of power-law fluids in heterogeneous porous media. Int. J. Heat Mass Transf. 106, 61–82 (2017)

    Article  Google Scholar 

  12. S. Liu, Q.Y. Zhu, Experimental and numerical investigations on combined Buoyancy-Marangoni convection heat and mass transfer of power-law nanofluids in a porous composite with complex surface. Int. J. Heat Mass Transf. 138, 825–843 (2019)

    Article  Google Scholar 

  13. D.A. Nield, A.V. Kuznetsov, The effects of combined horizontal and vertical heterogeneity on the onset of convection in a porous medium with horizontal throughflow. Int. J. Heat Mass Transf. 54, 5595–5601 (2011)

    Article  Google Scholar 

  14. M. Fahs, A. Younes, A. Makradi, A reference benchmark solution for free convection in a square cavity filled with a heterogeneous porous medium. Numer. Heat Transfer Part B Fundam. 67, 437–462 (2015)

    Article  ADS  Google Scholar 

  15. C.-Y. Chen, P.-Y. Yan, Radial flows in heterogeneous porous media with a linear injection scheme. Comput. Fluids 142, 30–36 (2017)

    Article  MathSciNet  Google Scholar 

  16. Y.J. Zhuang, Q.Y. Zhu, Analysis of entropy generation in combined buoyancy-Marangoni convection of power-law nanofluids in 3D heterogeneous porous media. Int. J. Heat Mass Transf. 118, 686–707 (2018)

    Article  Google Scholar 

  17. Y.J. Zhuang, Q.Y. Zhu, Numerical study on combined buoyancy-Marangoni convection heat and mass transfer of power-law nanofluids in a cubic cavity filled with a heterogeneous porous medium. Int. J. Heat Fluid Flow 71, 39–54 (2018)

    Article  Google Scholar 

  18. T. Hayat, A. Aziz, T. Muhammad, A. Alsaedi, An optimal analysis for Darcy-Forchheimer 3D flow of nanofluid with convective condition and homogeneous-heterogeneous reactions. Phys. Lett. A 382, 2846–2855 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. M.A. Mansour, T. Armaghani, A.J. Chamkha, A.M. Rashad, Entropy generation and nanofluid mixed convection in a C-shaped cavity with heat corner and inclined magnetic field. Eur. Phys. J. Spec. Top. 228, 2619–2645 (2019)

    Article  Google Scholar 

  20. H.T. Basha, R. Sivaraj, V.R. Prasad, O.A. Beg, Entropy generation of tangent hyperbolic nanofluid flow over a circular cylinder in the presence of nonlinear Boussinesq approximation: a non-similar solution. J. Therm. Anal. Calorim. 2020, 1–17 (2020)

    Google Scholar 

  21. H.T. Basha, R. Sivaraj, A.S. Reddy, A.J. Chamkha, H. Baskonus, A numerical study of the ferromagnetic flow of Carreau nanofluid over a wedge, plate and stagnation point with a magnetic dipole. AIMS Math. 5, 4197 (2020)

    Article  MathSciNet  Google Scholar 

  22. G. Kumaran, R. Sivaraj, A.S. Reddy, B.R. Kumar, V.R. Prasad, Hydromagnetic forced convective flow of Carreau nanofluid over a wedge/plate/stagnation of the plate. Eur. Phys. J. Spec. Top. 228, 2647–2659 (2019)

    Article  Google Scholar 

  23. O.K. Koriko, I. Animasaun, B. Mahanthesh, S. Saleem, G. Sarojamma, R. Sivaraj, Heat transfer in the flow of blood-gold Carreau nanofluid induced by partial slip and buoyancy. Heat Transfer-Asian Res. 47, 806–823 (2018)

    Article  Google Scholar 

  24. M.H. Fard, M.N. Esfahany, M. Talaie, Numerical study of convective heat transfer of nanofluids in a circular tube two-phase model versus single-phase model. Int. Commun. Heat Mass Transfer 37, 91–97 (2010)

    Article  Google Scholar 

  25. M. Sheikholeslami, D. Domiri Ganji, M. Younus Javed, R. Ellahi, Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model. J. Magn. Magn. Mater. 374, 36–43 (2015)

    Article  ADS  Google Scholar 

  26. M. Sheikholeslami, S.A. Shehzad, F.M. Abbasi, Z. Li, Nanofluid flow and forced convection heat transfer due to Lorentz forces in a porous lid driven cubic enclosure with hot obstacle. Comput. Methods Appl. Mech. Eng. 338, 491–505 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  27. M. Keshavarz Moraveji, R. Barzegarian, M. Bahiraei, M. Barzegarian, A. Aloueyan, S. Wongwises, Numerical evaluation on thermal-hydraulic characteristics of dilute heat-dissipating nanofluids flow in microchannels. J. Therm. Anal. Calorim. 135, 671–683 (2019)

    Article  Google Scholar 

  28. S.E. Ahmed, Z.A.S. Raizah, Effects of a non-uniform magnetic field-dependent viscosity on the ferroconvective flow in an inclined u-shaped enclosure. Iran. J. Sci. Technol. Trans. Mech. Eng. 2020, 8 (2020). https://doi.org/10.1007/s40997-020-00374-5

    Article  Google Scholar 

  29. Z.A.S. Raizah, S.E. Ahmed, Convective transport in case of variable properties in porous enclosures with/without two heated ellipsis with rough boundaries. Alexandria Eng. J. 59, 3927–3943 (2020). https://doi.org/10.1016/j.aej.2020.06.048

    Article  Google Scholar 

  30. D.J. Krishna, T. Basak, S.K. Das, Natural convection in a heat generating hydrodynamically and thermally anisotropic non-Darcy porous medium. Int. J. Heat Mass Transf. 51, 4691–4703 (2008)

    Article  Google Scholar 

  31. S.V. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere Publishing Corp., Washington, DC, 1980), p. 210

    MATH  Google Scholar 

  32. S.E. Ahmed, Mixed convection in thermally anisotropic non-Darcy porous medium in double lid-driven cavity using Bejan’s heatlines. Alexandria Eng. J. 55, 299–309 (2016)

    Article  Google Scholar 

  33. S.E. Ahmed, Influence of heat generation/absorption on natural convection of nanofluids in an inclined irregular cavity filled with porous medium. J. Comput. Theor. Nanosci. 11, 2449–2461 (2014)

    Article  Google Scholar 

  34. S.E. Ahmed-Sameh, FEM-CBS algorithm for convective transport of nanofluids in inclined enclosures filled with anisotropic non-Darcy porous media using LTNEM. Int. J. Numer. Methods Heat Fluid Flow 2020, 8 (2020). https://doi.org/10.1108/HFF-01-2020-0042

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under Grant no. R.G.P.1/254/42.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameh E. Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, S.E., Raizah, Z.A.S. & Aly, A.M. Three-dimensional flow of a power-law nanofluid within a cubic domain filled with a heat-generating and 3D-heterogeneous porous medium. Eur. Phys. J. Spec. Top. 230, 1185–1199 (2021). https://doi.org/10.1140/epjs/s11734-021-00040-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00040-0

Navigation