Skip to main content
Log in

Extinctions in time-delayed population maps, fallings, and extreme forcing

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

It is known that random population maps with time delay undergo a noise-mediated transition that produces the loss of its structural stability. Such a transition is optimized for a specific value of the noise correlation time of an Ornstein–Uhlenbeck forcing, as a consequence of the coupling of the involved deterministic and stochastic time scales. Here, it is shown that the deterministic time scale is related to the dynamics of the system close to a stability boundary. The escaping process depicts a survival distribution function similar to the one observed in human stick balancing, a task known to involve a truncated Lévy forcing. Here, it is shown that such extreme distribution favours the stabilisation of an inverted pendulum, when compared with a normal forcing, and the system parameters are close to a stability boundary. This outcome suggests that an unstable dynamics may temporarily avoid an extinguishing transition if the extreme forcing is able to tune the system parameters at specific time delay values (of physiological significance) close to the stability boundary. These results remark the relevance of feedbacks close to the stability edge on survival and extinction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.M. May, Nature 261, 459–467 (1976)

    Article  ADS  Google Scholar 

  2. L.P. Kadanoff, Phys. Today 36, 46–53 (1983)

    Article  ADS  Google Scholar 

  3. J.L. Cabrera, J.G. Milton, Phys. Rev. Lett. 89, 158702-1–4 (2002)

    Article  ADS  Google Scholar 

  4. J.L. Cabrera, J.G. Milton, Chaos 14, 691–698 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  5. R.F. Fox, I.R. Gatland, R. Roy, G. Vemury, Phys. Rev. A 38, 5938–5940 (1988)

    Article  ADS  Google Scholar 

  6. J. Maynard Smith, Mathematical Ideas in Biology (Cambridge University Press, Cambridge, 1968)

    Book  Google Scholar 

  7. D.G. Aronson, M.A. Chory, G.R. Hall, R.P. McGehee, Commun. Math. Phys. 83, 303–354 (1982)

    Article  ADS  Google Scholar 

  8. J.R. Pounder, T.D. Rogers, Bull. Math. Biol. 42, 551–597 (1980)

    Article  MathSciNet  Google Scholar 

  9. Y. Morimoto, Phys. Lett. A 134, 179–182 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  10. J.L. Cabrera, F.J. de la Rubia, Phys. Lett. 197, 19–24 (1995)

    Article  MathSciNet  Google Scholar 

  11. J.L. Cabrera, F.J. de la Rubia, Int. J. Bifurcat. Chaos 6, 1683–1690 (1996)

    Article  Google Scholar 

  12. J.L. Cabrera, F.J. de la Rubia, Europhys. Lett. 39, 123–128 (1997)

    Article  ADS  Google Scholar 

  13. J.L. Cabrera, F.J. de la Rubia, Phys. Rev. Lett. 39, 2816–2819 (1999)

    Article  ADS  Google Scholar 

  14. ChR Doering, J.C. Gadoua, Phys. Rev. Lett. 69, 2318 (1992)

    Article  ADS  Google Scholar 

  15. B. Spagnolo, C. Guarcello, L. Magazzú, A. Carollo, D. Persano Adorno, D. Valenti, Entropy 19, 20 (2017)

    Article  ADS  Google Scholar 

  16. B. Spagnolo, D. Valenti, C. Guarcello, A. Carollo, D. Persano Adorno, S. Spezia, N. Pizzolato, B. Di Paola, Chaos Sol. Fract. 81, 412–424 (2015)

    Article  ADS  Google Scholar 

  17. M.H. Devoret, J.M. Martinis, D. Esteve, J. Clarke, Phys. Rev. Lett. 53, 1260–1263 (1984)

    Article  ADS  Google Scholar 

  18. J.L. Cabrera, J.G. Milton, Nonlinear Stud. 2, 1–13 (2003)

    Google Scholar 

  19. J.L. Cabrera, Ch. Luciani, J.G. Milton, Cond. Matter Phys. 9, 373–383 (2006)

    Article  Google Scholar 

  20. J.D. Kalbfleisch, R.L. Prentice, The Statistical Analysis of Failure Time Data (Wiley, Toronto, 1980)

    MATH  Google Scholar 

  21. M.C. Mackey, J.G. Milton, J. Math. Biol. 28, 22 (1990)

    Article  Google Scholar 

  22. J.L. Cabrera, G.C. Herrera-Almarza, E.D. Gutiérrez, Phys. A 512, 1121–1127 (2018)

  23. H.M. Gupta, J.R. Campanha, Phys. A 275, 531–543 (2000)

    Article  Google Scholar 

  24. T. Erneux, Applied Delay Differential Equations (Springer-Verlag, New York, 2009)

    MATH  Google Scholar 

  25. R. Weron, Stat. Prob. Lett. 28, 165 (1996)

    Article  MathSciNet  Google Scholar 

  26. G. Augello, D. Valentia, B. Spagnolo, Eur. Phys. J. B 78, 225–234 (2010)

    Article  ADS  Google Scholar 

  27. H. Harrison, D. Kelty-Stephen, D. Vaz, C. Michaels, Phys. Rev. E 89, 1–5 (2014)

    Article  Google Scholar 

  28. J.E. Hirsch, B.A. Huberman, D.V. Scalapino, Phys. Rev. A 25, 519 (1982)

    Article  ADS  Google Scholar 

  29. J.M. Casado, M. Morillo, Phys. Rev. A 42, 1875 (1990)

    Article  ADS  Google Scholar 

  30. I. Dayan, M. Gitterman, G.H. Weiss, Phys. Rev. A 46, 757 (1992)

    Article  ADS  Google Scholar 

  31. R.N. Mantegna, B. Spagnolo, Phys. Rev. Lett. 76, 563–566 (1996)

    Article  ADS  Google Scholar 

  32. N.V. Agudov, A.N. Malakhov, Int. J. Bifurcat. Chaos 5, 531 (1995)

    Article  Google Scholar 

  33. A.N. Malakhov, A.L. Pankratov, Phys. C 269, 46 (1996)

    Article  ADS  Google Scholar 

  34. N.V. Agudov, Phys. Rev. E 57, 2618 (1998)

    Article  ADS  Google Scholar 

  35. N.V. Agudov, A.N. Malakhov, Phys. Rev. E 60, 6333 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  36. D. Valenti, L. Magazzú, P. Caldara, B. Spagnolo, Phys. Rev. B 91, 235412 (2015)

    Article  ADS  Google Scholar 

  37. B. Spagnolo, A.A. Dubkov, A.L. Pankratov, E.V. Pankratova, A. Fiasconaro, A. Ochab-Marcinek, Acta Phys. Pol., B 38, 1925–1950 (2007)

    ADS  Google Scholar 

  38. V.E. Shapiro, Phys. Rev. E 48, 109 (1993)

    Article  ADS  Google Scholar 

  39. S. Ciuchi, F. de Pasquale, B. Spagnolo, Phys. Rev. E 47, 3915 (1993)

    Article  ADS  Google Scholar 

  40. F. Chillá, M. Rastello, S. Chaumat, B. Castaing, Eur. Phys. J. 40, 273–281 (2004)

    Article  Google Scholar 

  41. P.-F. Verhulst, Notice sur la loi que la population suit dans son accroissement. Correspondance mathmatique et physique. 10, 113–121 (1838)

    Google Scholar 

  42. P.J. Jackson, C.J. Lambert, R. Mannella, P. Martano, P.V.E. McClintock, N.G. Stocks, Phys. Rev. A 40, 2875 (1989)

    Article  ADS  Google Scholar 

  43. J. Golec, S. Sathananthan, Math. Comput. Modell. 38, 585 (2003)

    Article  Google Scholar 

  44. R. Mannella, C.J. Lambert, N.G. Stocks, P.V.E. McClintock, Phys. Rev. A 41, 3016 (1990)

    Article  ADS  Google Scholar 

  45. H. Calisto, M. Bologna, Phys. Rev. E 75, 050103–1(R) (2007)

    Article  ADS  Google Scholar 

  46. A.A. Dubkov, B. Spagnolo, Eur. Phys. J. B 65, 361–367 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  47. J. L. Cabrera, E. D. Gutiérrez and M. Rodríguez, Chaos Sol. Fract. (2021). https://doi.org/10.1016/j.chaos.2021.110876

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Luis Cabrera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabrera, J.L., Gutiérrez, E.D. Extinctions in time-delayed population maps, fallings, and extreme forcing. Eur. Phys. J. Spec. Top. 230, 3229–3234 (2021). https://doi.org/10.1140/epjs/s11734-021-00015-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00015-1

Navigation