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Abstract
We report the digital quantum simulation of a hamiltonian involved in the generation
of quantum entanglement by gravitational means. In particular, we focus on a pair of
quantum harmonic oscillators, whose interaction via a quantum gravitational field
generates single-mode squeezing in both modes at the same time, a non-standard
process in quantum optics. We perform a boson-qubit mapping and a digital gate
decomposition specific for IBM quantum devices. We use error mitigation and
post-selection to achieve high-fidelity, accessing a parameter regime out of direct
experimental reach.
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1 Introduction
Experimental tests of a quantum theory of gravity are entirely beyond experimental reach.
A more modest approach has emerged recently, where the focus is just to prove the quan-
tum nature of gravity, even without unveiling the underlying full quantum theory [1–8].
The idea behind this novel approach is that if we are able to generate quantum entangle-
ment between quantum systems by gravitational means, then we know that gravity must
be quantum. While these experimental proposals are still beyond the reach of state-of-
the-art quantum technology, it is at least conceivable that the rapid advancement of the
experimental setups could change this scenario in the short/medium term, enabling a di-
rect test of the quantum side of gravity.

In [9], the mechanism of entanglement generation by a quantum gravitational field is
elucidated, by considering a hamiltonian formalism and a setup of two quantum harmonic
oscillators in the presence of a gravitational field. The quantum treatment of the field gives
rise to interaction hamiltonians between the two bosonic modes, which evolve from the
ground state to an entangled one. The authors distinguish between two different regimes,
static and non-static. In the latter, the hamiltonian generates single-mode squeezing in
the two modes at the same time, a non-standard interaction in conventional quantum
optics, by means of the exchange of a graviton, which is then the entanglement source.
Then, the detection of the evolution from a ground state to an entangled state with a
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small probability amplitude of containing excitation pairs in both modes would be the
signature of the quantum nature of the field. However, the parameter regime at which this
interaction would be dominant lies beyond current experimental reach [9]. In this paper,
we address this issue, by considering a quantum platform in which these results can be
simulated. The non-standard nature of the interaction makes it difficult to think of an
analogue quantum simulation, so we will consider a digital approach.

We have recently introduced a recipe for digital quantum simulation of multimode
bosonic hamiltonians [10]. It consists in the combination of Trotter [11] and gate-
decomposition techniques [12] with a boson-qubit mapping [13, 14] in order to encode
bosonic hamiltonians into a sequence of single-qubit and two-qubit gates. We have applied
this scheme to the high-fidelity digital quantum simulation of paradigmatic quantum-
optics interactions, such as beam-splitters or single-mode and two-mode squeezers [15].

In this work, we apply this scheme to the digital quantum simulation in IBM quantum
devices of the quantum gravitational hamiltonian of [9]. We translate the bosonic two-
mode hamiltonian into a multiqubit interaction, which is then decomposed into the gate
set available in IBM quantum computers. In order to show the potential of current quan-
tum technology, we consider the simplest scenario, where the maximum number of exci-
tations allowed per mode is restricted to 2 and the fidelity is approximated by the leading
order in a perturbative approach. Moreover, we make use of error mitigation and post-
selection techniques to achieve high-fidelity quantum simulations, with fidelities above
90%. These preliminary few-qubit experiments can be understood as a first step towards
larger quantum simulations including more modes and more photons per mode, which
would go beyond the capabilities of classical computers. In this post-classical regime, dig-
ital quantum simulations would be a unique way of informing the developments of the
actual quantum gravitational experiments. Moreover, the generation of an entangled state
in such a setup could be considered an indirect proof –or, at least, a reassuring argument–
of the generation of quantum entanglement by gravitational means, and therefore, of the
quantum nature of gravity.

The structure of the paper is the following. In the next section, we introduce the hamilto-
nian of interest and apply the digitization framework to it. Then, we report on the results of
the fidelity for the circuits of Sect. 2 after launching them in a suitable quantum computer.
In the last section we summarize our results and discuss extensions and generalizations.

2 Digitization
Following [9], we consider two quantum harmonic oscillators interacting via a gravita-
tional field. While a consistent full quantum treatment of the field remains of course un-
known, we can always adopt an effective field approach, in which a small linear perturba-
tion to the Minkowski metric is promoted to a quantum field in terms of spin-2 graviton
creation and annihilation operators. In so doing, in [9] it is shown that if the harmonic os-
cillators are in fixed positions -static regime- then the leading interaction terms between
them are two-mode squeezing and beam-splitter hamiltonians. This class of hamiltionians
was already digitized in [10, 15], giving rise to high-fidelity quantum simulations.

If the oscillators are non-static, then a new Hamiltonian [9] appears

HAB = –�g
(
a†2b†2 + a2b2), (1)
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where A and B are two harmonic oscillators separated by a distance d/2, with frequency
ωm and creation operators a†, b†, respectively, and � is the reduced Planck constant, as
usual. The coupling between the oscillators is

g =
9G�ω2

m
16c4d

, (2)

G being Newton constant and c the speed of light in vacuum, as usual. This hamiltonian
would dominate the entanglement generation in a regime of frequencies that is beyond
experimental reach ωm > 1021 Hz [9]. Interestingly, this double single-mode squeezing in-
teraction is not usually discussed in standard quantum optics scenarios, as highlighted in
[9].

Notice that the hamiltonian in Eq. (1) can only exist if the field is quantum and that
regardless the actual underlying quantum theory, it would account for the quantum grav-
itational field as long as it can be treated as a linear perturbation, which is of course the
case for weak gravitational fields, such as the one generated by the Earth near its surface.
Therefore, detecting the effects of the physical action of Eq. (1) would amount to detecting
the quantum nature of the gravitational field or, in other words, the existence of gravitons.
In particular, if the initial state is the ground state of the two quantum harmonic oscilla-
tors, |0〉A|0〉B, the evolution under Eq. (1) would give rise to a state [9]:

|�〉 =
1

√
1 + (g/(2ωm)2)

(
|0〉A|0〉B +

g
2ωm

|2〉A|2〉B

)
, (3)

containing a small probability of having two excitations per mode. This is an entangled
state, with concurrence [9]:

C �
√

2g
ωm

. (4)

Thus, proving the evolution from the ground state to a state with a certain probability
amplitude of |2〉A|2〉B would prove the generation of quantum entanglement by gravita-
tional means and therefore the quantum nature of the gravitational field.

Therefore, we want to simulate the unitary

Uε = e–iHABt/� = eiε(a†2b†2+a2b2), (5)

where

ε = gt. (6)

For ωm = 1021 Hz and d = 10–4 m, we would have g ≈ 10–31 Hz. However, in our simulated
scenario we could consider even larger values of ωm, leveraging the fact that the coupling
grows quadratically with ωm. This would give rise also to larger entanglement generation.

The main goal of this paper is the digitization of the unitary in Eq. (5). For this, we start
with a boson-qubit mapping. As shown in [13, 14], it is possible to map N bosonic modes
containing a maximum number of Np excitations each to N(Np + 1) qubits. In our current
case, we have to consider only two modes, and we can start by restricting ourselves to two
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maximum excitations, since we can consider an initial ground state and the leading order
contribution of Eq. (5) acting on it. Therefore we will need six qubits, labeled from 0 to 5.
According to the boson-qubit mapping in [13, 14], we have the following Fock states |n〉:

|0〉A ↔ |001112〉,
|1〉A ↔ |100112〉, (7)

|2〉A ↔ |101102〉,

for mode A and similarly

|0〉B ↔ |031415〉,
|1〉B ↔ |130415〉, (8)

|2〉B ↔ |131405〉,

for mode B, where |0i〉, |1i〉 (i = 0, 1, . . . , 5) are the states of qubit i, which are the eigenstates
associated to the positive and negative eigenvalues of the Pauli operator σ i

z , respectively.
Using the boson-qubit operator mapping for NP = 2, we can write the bosonic creation
operators as:

a† → σ 0
–σ 1

+ +
√

2σ 1
–σ 2

+ ,

b† → σ 3
–σ 4

+ +
√

2σ 4
–σ 5

+ ,
(9)

where the Pauli creation and annihilation operators are given by

σ k
± =

1
2
(
σ k

x ± iσ k
y
)
, (10)

in terms of the Pauli matrices σx and σy (k = 0, 1, . . . , 5). Notice that, for each qubit σ+|0〉 =
0, σ–|0〉 = |1〉, σ–|1〉 = 0, σ+|1〉 = |0〉.

Using Eq. (9) and the properties of the Pauli operators:

σ k
±σ k

∓ =
1
2
(
1 ± σ k

z
)
,

σ k
±σ k

± = 0,
(11)

we get

a†2 → √
2σ 0

–σ 2
+ ,

a2 → √
2σ 0

+σ 2
– ,

b†2 → √
2σ 3

–σ 5
+ ,

b2 → √
2σ 3

+σ 5
– .

(12)

Therefore, we have:

a†2b†2 + a2b2 → 2
(
σ 0

–σ 2
+σ 3

–σ 5
+ + σ 0

+σ 2
–σ 3

+σ 5
–
)
. (13)
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Then, using Eq. (10) and summing up, we get:

a†2b†2 + a2b2 → 1
4
(
σ 0

x σ 2
x σ 3

x σ 5
x + σ 0

x σ 2
x σ 3

y σ 5
y – σ 0

x σ 2
y σ 3

x σ 5
y

+ σ 0
x σ 2

y σ 3
y σ 5

x + σ 0
y σ 2

x σ 3
x σ 5

y – σ 0
y σ 2

x σ 3
y σ 5

x

+ σ 0
y σ 2

y σ 3
x σ 5

x + σ 0
y σ 2

y σ 3
y σ 5

y
)
. (14)

Although it might look that the different terms in Eq. (14) do not commute, we can check
that they do. Let us consider two terms, and notice that, using the properties of the com-
mutators and the fact that the operators acting on different qubits obviously commute, we
have:

[
σ 0

x σ 2
x σ 3

x σ 5
x ,σ 0

x σ 2
y σ 3

y σ 5
x
]

=
[
σ 0

x σ 2
x ,σ 0

x σ 2
y
]
σ 3

x σ 5
x σ 3

y σ 5
x + σ 0

x σ 2
y σ 0

x σ 2
x
[
σ 3

x σ 5
x ,σ 3

y σ 5
x
]
. (15)

Then, similarly:

[
σ 0

x σ 2
x ,σ 0

x σ 2
y
]

=
(
σ 0

x
)2[

σ 2
x ,σ 2

y
]
, (16)

[
σ 3

x σ 5
x ,σ 3

y σ 5
x
]

=
[
σ 3

x ,σ 3
y
](

σ 5
x
)2. (17)

Putting everything together and using the properties of Pauli matrices σ
(k)
i σ

(k)
j = iεijkσ

(k)
k

(εijk being the Levi-Civita tensor), the two contributions in Eq. (15) cancel out. And we
can proceed similarly with all the terms in Eq. (14).

Since everything commutes, we have

Uε =
8∏

i=1

U (i)
ε , (18)

where the U (i)
ε ’s are given by Eq. (14). For instance:

U (1)
ε = ei ε

4 σ
(0)
x σ

(2)
x σ

(3)
x σ

(5)
x . (19)

However, these unitaries are not directly available in the quantum devices of IBM. There-
fore, we have to perform a gate decomposition to express it in terms of the desired gate
set. In general, if we find an unitary operation U such that:

H = U†H0U , (20)

then we can write the dynamics governed by the Hamiltonian H as:

eiHε = U†eiH0εU . (21)
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Thus we can perform a separate gate decomposition for each U (i)
ε . For instance, for the

first term we can use:

e–i π
4 σ 0

x
(
–σ 0

z
)
ei π

4 σ 0
x = σ 0

y ,

e–i π
4 σ 0

z σ 2
x σ 0

y ei π
4 σ 0

z σ 2
x = –σ 0

x σ 2
x ,

e–i π
4 σ 0

z σ 3
x
(
–σ 0

x σ 2
x
)
ei π

4 σ 0
z σ 3

x = –σ 0
y σ 2

x σ 3
x ,

e–i π
4 σ 0

z σ 5
x
(
–σ 0

y σ 2
x σ 3

x
)
ei π

4 σ 0
z σ 5

x = σ 0
x σ 2

x σ 3
x σ 5

x .

(22)

Therefore, by using Eqs. (20),(21) and (19) we find:

U (1)
ε = U†e–i ε

4 σ 0
z U , (23)

where:

U = ei π
4 σ 0

x ei π
4 σ 0

z σ 2
x ei π

4 σ 0
z σ 3

x ei π
4 σ 0

z σ 5
x . (24)

Note that similar decompositions can be obtained for the rest of U (i)
ε ’s by adding at the

end of the string the number of eiπ/4σ
(i)
z necessary to rotate some of the σx to σy –although

there might be more efficient decompositions for each particular case. With this procedure
we will have a total number of 24 single-qubit rotations and 24 two-qubit ZX-gates. An
extra step is needed though, which is the conversion of the ZX gates into the CNOT gates
available in the IBM architecture. The two-qubit gates can be translated into CNOT gates
by using:

ei π
4 σ 0

z σ
j
x = ei π

4 σ
j
x ei π

4 σ 0
z e–i π

4 CNOT0–j, (25)

where the CNOT gate between a pair of qubits i, j is defined as:

CNOTi–j =

⎛

⎜
⎜⎜
⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞

⎟
⎟⎟
⎠

. (26)

We also define the single-qubit single-parameter rotation

U1(λ) =

(
1 0
0 eiλ

)

= e
iλ
2 e– iλσz

2 , (27)

the single-qubit S gate,

S =

(
1 0
0 i

)

= ei π
4 e–i π

4 σz , (28)

and the single-qubit RX(θ ) gate:

RX(θ ) = e–i θX
2 , (29)

where X = σx, using the same conventions as IBM.
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Putting everything together, some operations on qubit 0 cancel out and we get-up to
global phases- a final expression with 9 single-qubit gates and six CNOT gates:

U (1)
ε = CNOT0–5S0CNOT0–3S0CNOT0–2S0R0

X

(
π

2

)
U1

(
ε

2

)
R0

X

(
π

2

)
S†0

× CNOT0–2S†0CNOT0–3S†0CNOT0–5. (30)

As mentioned above, the rest of the U (i)
ε ’s would be obtained by adding the necessary S

gates at the end of the string.
In Fig. 1, we see the circuit corresponding to the whole unitary Uε for ε = 0.5 · 10–6

acting on an initial ground state as launched by us in IBM Auckland and in Fig. 2 the final
“transpiled” version. All the circuits were transpiled using qiskit optimization level 3 [16].
Note that the initial four X-gates in Fig. 1 are required for the preparation of the initial
ground state

|0〉A|0〉B ↔ |001112〉|031415〉 (31)

and that in Fig. 2, the definitions are:

√
X =

1
2

(
1 + i 1 – i
1 – i 1 + 1

)

= ei π
4 RX

(
π

2

)
, (32)

and

RZ(θ ) = e– iθZ
2 , (33)

with Z = σz.
As can be seen in Fig. 2, the transpilation simplifies the circuit significantly, since the

whole unitary only comprises 9 CNOT gates and 30 single-qubit gates.

3 Fidelity
In order to assess the performance of our digitization, the goal now is to characterize the
fidelity of the state. Notice that the restriction to a maximum of two photons per mode
corresponds to a restriction to perturbative values of ε. In second-order perturbation the-
ory, the state that we intend to simulate would have the form

|ψ〉 =
(
1 – ε2)|0〉A|0〉B – i

√
2ε|2〉A|2〉B. (34)

Our aim is to compute the fidelity [17]

F
(|ψ〉,ρ)

=
〈
ψ |ρ|ψ 〉

. (35)

where ψ is the aforementioned perturbative state and ρ is the state actually obtained in
the experiment. The leading order term of the fidelity would be

F = P0, (36)
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Figure 1 Quantum circuit for the unitary Eq. (30) and ε = 0.05 · 10–6
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Figure 2 Final transpiled circuit run in Auckland for the same circuit of Fig. 1

where P0 is the probability of the ground state in the state ρ , which can be easily re-
trieved from the experiment with qiskit, thus obtaining a second-order approximation
error. Moreover, we are only interested in the initial ground state and in the dynamics
generated by the hamiltonian (1), so we can also use post-selection, by simply neglect-
ing all the probability counts of the states that are not |0〉A|0〉B → |001112〉|031415〉 or
|2〉A|2〉B → |101102〉|131405〉. We also make use of error mitigation techniques in the read-
out process [18].

We will present results in IBM Auckland, a 27-qubit machine which displays both a high
quantum volume QV = 64 [19] and the connectivity required for our purpose, that is, the
availability of the CNOT gates needed to implement the unitary. Typical average error
rates in Auckland are 1.127 ×10–2 for readout (note however that we have used error mit-
igation for the readout), 4.278 × 10–4 for single-qubit gates and 1.413 × 10–2 for CNOT
gates. Error bars can be assigned by considering a typical average readout assignment er-
ror and standard error propagation techniques. Note however that all these parameters
change on a daily basis. We realized the experiments on March 2, 2022. With 9 CNOT
gates, 30 single-qubit gates and six readouts and the error rates above fidelity would be
expected to drop below 80%. However, with the mentioned use of post-selection and mit-
igation we have been able to retrieve fidelities close to 1, as can be seen in Fig. 3. The
fraction of discarded measurements in the post-selection measurements is around 10%.
Note that we are considering a parameter range that, while still perturbatively small, goes
beyond what can be achieved experimentally, as discussed above.
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Figure 3 Fidelities – approximated by Eq. (36) – vs
logε of the target sate with respect to the state in
Eq. (34) for the digital quantum simulation in
Auckland with ε ranging from 0.5 · 10–6 to 0.5 · 10–2

4 Conclusions and discussion
We present results of the digital quantum simulation of a double single-mode squeezing
hamiltonian, which is expected to be involved in the generation of quantum entanglement
between two quantum harmonic oscillators by a gravitational field. We use a boson-qubit
mapping in order to translate bosonic hamiltonians into multiqubit gates. Then we apply
gate-decomposition techniques to express them as a sequence of single-qubit and CNOT
gates to launch the circuits in IBM quantum devices. We make use of error mitigation
strategies – only in the measurement stage – and also post-selection in order to achieve
high-fidelity simulations. We choose Auckland as a platform with high QV and the right
connectivity. The achieved fidelities are above 90% for a large range of parameters, lying
in the perturbative regime. Therefore, we generate quantum entanglement by means of an
interaction which simulates the action of a quantum gravitational field. While the current
experimental proposals develop [1–9], this quantum simulation platform could inform
them by enabling access to parameter regimes that are beyond direct experimental reach.
Moreover, the digital approach allows to consider the benefits of quantum error correction
techniques [20]. This could be necessary when considering extensions to higher number
of modes or excitations or non-perturbative couplings. With the techniques developed in
[10, 15] it would be straightforward to address the extension to higher number of modes
or allowed excitations. For instance, considering that state-of-the art quantum computers
contain around 100 superconducting qubits, we could consider up to around 50 maximum
excitations per mode, restricting ourselves to two harmonic oscillators. The extension of
the operators [10, 15] would translate into the appearance of interaction terms with more
than 4 qubits, which would require an increase in connectivity beyond the current IBM
designs based on heavy-hexagon geometries [21]. Otherwise, SWAP operations should
be introduced to move the forbidden CNOTs to other pair of qubits where the gate is
available, therefore increasing significantly the number of gates. We could also add more
terms to the perturbative approximation to the state and the fidelity, or even abandon
the perturbative approach and go for a full tomography of the state [15], which would
also increase the number of gates. At this point, as expected for such a large number of
qubits, the problem would be presumably hard to simulate with a classical computer [22,
23], which illustrates the necessity of a quantum setup such as the one presented here.
While at the moment we do not have access to a large quantum computer in which all the
above could be considered while keeping a good fidelity, the few-qubits high-fidelity circuit
reported in this work can be understood as a promising first step along that direction,
since the full simulation would consist basically on iterations of the basic building blocks
introduced here. Given the rapid development of quantum computers in the last years, we
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anticipate that in the short term there will be a quantum computer with several hundreds
of qubits and improved gate fidelities in which an algorithm consisting in the application
of the recipe presented here to more modes and excitations would generate an entangled
state with high fidelity. While direct experiments are not available this would be the only
way of proving that entanglement can be generated by gravitational means in a quantum
setup, since we do not know of any analogue quantum simulation of this system.
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